当前位置: 首页 > news >正文

Android AudioFlinger(五)—— 揭开AudioMixer面纱

前言:

在 Android 音频系统中,AudioMixer 是音频框架中一个关键的组件,用于处理多路音频流的混音操作。它主要存在于音频回放路径中,是 AudioFlinger 服务的一部分。

上一节我们讲threadloop的时候,提到了一个函数prepareTracks_l,在这个函数的最后就调用了 mAudioMixer->create、mAudioMixer->setParameter去设置参数,channel、format、volume等等。

AudioMixer继承自 AudioMixerBase,当我们去看AudioMixer的构造函数的时候发现并没有做任何操作
在这里插入图片描述

那他的初始化代码在哪里呢?

走进AudioMixer:

我们看prepareTracks_l内关于mAudioMixer的调用流程就可以发现,他首先调用了create函数,然而Audiomixer内部却没有实现create接口,我们追溯到它的父类,发现在AudioMixerBase对象种定义了create接口并且实现了。

我们粗略的看下create里主要做了什么,代码多我做了删减。

status_t AudioMixerBase::create(int name, audio_channel_mask_t channelMask, audio_format_t format, int sessionId)
{LOG_ALWAYS_FATAL_IF(exists(name), "name %d already exists", name);if (!isValidChannelMask(channelMask)) {ALOGE("%s invalid channelMask: %#x", __func__, channelMask);return BAD_VALUE;}if (!isValidFormat(format)) {ALOGE("%s invalid format: %#x", __func__, format);return BAD_VALUE;}auto t = preCreateTrack();{t->needs = 0;t->volume[0] = 0;...t->channelCount = audio_channel_count_from_out_mask(channelMask);t->enabled = false;t->channelMask = channelMask;t->sessionId = sessionId;t->hook = NULL;...// setBufferProvider(name, AudioBufferProvider *) is required before enable(name)t->sampleRate = mSampleRate;t->mMixerFormat = AUDIO_FORMAT_PCM_16_BIT;t->mFormat = format;t->mMixerChannelCount = audio_channel_count_from_out_mask(t->mMixerChannelMask);t->mInputFrameSize = audio_bytes_per_frame(t->channelCount, t->mFormat);status_t status = postCreateTrack(t.get());if (status != OK) return status;mTracks[name] = t;return OK;}
}

可以看到除了一开始做了channel和format的判断,后面基本上就是对track的初始化,像volume、channel、format、sampleRate还有Hook的初始化。

初始化完成后就开始调用AudioMixer内部的接口了,我们依次往下看发现还有getUnreleasedFrames、setParameter、setBufferProvider、process等。
我们先看下setParameter,当属性变化的时候就会调用到这里。


void AudioMixer::setParameter(int name, int target, int param, void *value)
{LOG_ALWAYS_FATAL_IF(!exists(name), "invalid name: %d", name);const std::shared_ptr<Track> &track = getTrack(name);int valueInt = static_cast<int>(reinterpret_cast<uintptr_t>(value));int32_t *valueBuf = reinterpret_cast<int32_t*>(value);switch (target) {case TRACK:switch (param) {case CHANNEL_MASK: {const audio_channel_mask_t trackChannelMask =static_cast<audio_channel_mask_t>(valueInt);if (setChannelMasks(name, trackChannelMask,static_cast<audio_channel_mask_t>(track->mMixerChannelMask | track->mMixerHapticChannelMask))) {ALOGV("setParameter(TRACK, CHANNEL_MASK, %x)", trackChannelMask);invalidate();}} break;case MAIN_BUFFER:if (track->mainBuffer != valueBuf) {track->mainBuffer = valueBuf;ALOGV("setParameter(TRACK, MAIN_BUFFER, %p)", valueBuf);if (track->mKeepContractedChannels) {track->prepareForAdjustChannels(mFrameCount);}invalidate();}break;case AUX_BUFFER:AudioMixerBase::setParameter(name, target, param, value);break;case FORMAT: {audio_format_t format = static_cast<audio_format_t>(valueInt);if (track->mFormat != format) {ALOG_ASSERT(audio_is_linear_pcm(format), "Invalid format %#x", format);track->mFormat = format;ALOGV("setParameter(TRACK, FORMAT, %#x)", format);track->prepareForReformat();invalidate();}} break;case MIXER_FORMAT: {audio_format_t format = static_cast<audio_format_t>(valueInt);if (track->mMixerFormat != format) {track->mMixerFormat = format;ALOGV("setParameter(TRACK, MIXER_FORMAT, %#x)", format);if (track->mKeepContractedChannels) {track->prepareForAdjustChannels(mFrameCount);}}} break;case MIXER_CHANNEL_MASK: {const audio_channel_mask_t mixerChannelMask =static_cast<audio_channel_mask_t>(valueInt);if (setChannelMasks(name, static_cast<audio_channel_mask_t>(track->channelMask | track->mHapticChannelMask),mixerChannelMask)) {ALOGV("setParameter(TRACK, MIXER_CHANNEL_MASK, %#x)", mixerChannelMask);invalidate();}} break;
...default:LOG_ALWAYS_FATAL("setParameter track: bad param %d", param);}break;case RESAMPLE:case RAMP_VOLUME:case VOLUME:AudioMixerBase::setParameter(name, target, param, value);break;case TIMESTRETCH:switch (param) {case PLAYBACK_RATE: {const AudioPlaybackRate *playbackRate =reinterpret_cast<AudioPlaybackRate*>(value);
...} break;default:LOG_ALWAYS_FATAL("setParameter timestretch: bad param %d", param);}break;default:LOG_ALWAYS_FATAL("setParameter: bad target %d", target);}
}

函数的主要结构就是一个switch,首先通过trackId找到对应的track对象,然后去设置对应track的parameter参数,例如 CHANNEL_MASK、FORMAT、MAIN_BUFFER等。

这只是设置参数,那混音在哪里呢?我们继续往下看process

void process() {preProcess();(this->*mHook)();postProcess();
}

这里主要就是调用mHook,mHook是一个函数指针,他会根据不同的场景分别调用不同的函数。

  • process__nop:初始值
  • process__genericResampling:对两路以上的track进行重采样操作
  • process__genericNoResampling:对两路以上的track不进行重采样操作
  • process__validate:这个函数就是根据当前的不同情况将mHook指向不同的函数
  • process__oneTrack16BitsStereoNoResampling:只有一路track,16bit,立体声的时候不进行重采样
process_hook_t mHook = &AudioMixerBase::process__nop;

mHook初始化的时候指向的是process__nop

void invalidate() {mHook = &AudioMixerBase::process__validate;}

process__validate是在invalidate函数里幅值给了mHook 指针。

void AudioMixerBase::process__validate()
{// select the processing hooksmHook = &AudioMixerBase::process__nop;if (mEnabled.size() > 0) {if (resampling) {if (mOutputTemp.get() == nullptr) {mOutputTemp.reset(new int32_t[MAX_NUM_CHANNELS * mFrameCount]);}if (mResampleTemp.get() == nullptr) {mResampleTemp.reset(new int32_t[MAX_NUM_CHANNELS * mFrameCount]);}mHook = &AudioMixerBase::process__genericResampling;} else {// we keep temp arrays around.mHook = &AudioMixerBase::process__genericNoResampling;if (all16BitsStereoNoResample && !volumeRamp) {if (mEnabled.size() == 1) {const std::shared_ptr<TrackBase> &t = mTracks[mEnabled[0]];if ((t->needs & NEEDS_MUTE) == 0) {// The check prevents a muted track from acquiring a process hook.//// This is dangerous if the track is MONO as that requires// special case handling due to implicit channel duplication.// Stereo or Multichannel should actually be fine here.mHook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK,t->mMixerChannelCount, t->mMixerInFormat, t->mMixerFormat,t->useStereoVolume());}}}}}
}

这个函数首先使用while循环来遍历每一个track,然后通过 NEEDS_RESAMPLE、NEEDS_AUX、NEEDS_CHANNEL_1、NEEDS_MUTE等判断,最终得到resampling、all16BitsStereoNoResample、volumeRamp的值,然后基于这几个值来决定调用,mHook来指向哪一个函数。

至于音频流数据是如何混到一起的,我们后面章节再来进一步分析。

相关文章:

Android AudioFlinger(五)—— 揭开AudioMixer面纱

前言&#xff1a; 在 Android 音频系统中&#xff0c;AudioMixer 是音频框架中一个关键的组件&#xff0c;用于处理多路音频流的混音操作。它主要存在于音频回放路径中&#xff0c;是 AudioFlinger 服务的一部分。 上一节我们讲threadloop的时候&#xff0c;提到了一个函数pr…...

分类学习(加入半监督学习)

#随机种子固定&#xff0c;随机结果也固定 def seed_everything(seed):torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.cuda.manual_seed_all(seed)torch.backends.cudnn.benchmark Falsetorch.backends.cudnn.deterministic Truerandom.seed(seed)np.random.see…...

Serilog: 强大的 .NET 日志库

Serilog 是一个功能强大的日志记录库&#xff0c;专为 .NET 平台设计。它提供了丰富的 API 和可插拔的输出器及格式化器&#xff0c;使得开发者能够轻松定制和扩展日志记录功能。在本文中&#xff0c;我们将探索 Serilog 的基础知识、API 使用、配置和一些常见的示例。 1. 日志…...

Matlab——添加坐标轴虚线网格的方法

第一步&#xff1a;在显示绘制图的窗口&#xff0c;点击左上角 “编辑”&#xff0c;然后选“坐标区属性” 第二步&#xff1a;点 “网格”&#xff0c;可以看到添加网格的方框了...

π0及π0_fast的源码解析——一个模型控制7种机械臂:对开源VLA sota之π0源码的全面分析,含我司微调π0的部分实践

前言 ChatGPT出来后的两年多&#xff0c;也是我疯狂写博的两年多(年初deepseek更引爆了下)&#xff0c;比如从创业起步时的15年到后来22年之间 每年2-6篇的&#xff0c;干到了23年30篇、24年65篇、25年前两月18篇&#xff0c;成了我在大模型和具身的原始技术积累 如今一转眼已…...

TCP7680端口是什么服务

WAF上看到有好多tcp7680端口的访问信息 于是上网搜索了一下&#xff0c;确认TCP7680端口是Windows系统更新“传递优化”功能的服务端口&#xff0c;个人理解应该是Windows利用这个TCP7680端口&#xff0c;直接从内网已经具备更新包的主机上共享下载该升级包&#xff0c;无需从微…...

服务器python项目部署

角色&#xff1a;root, 其他用户应该也可以 1. 安装python3环境 #如果是新机器&#xff0c;尽量执行&#xff0c;避免未知报错 yum -y update python -v yum install python3 python3 -v2. 使用virtualenvwrapper 创建虚拟环境,并使用workon切换不同的虚拟环境 # 安装virtua…...

Hive-优化(语法优化篇)

列裁剪与分区裁剪 在生产环境中&#xff0c;会面临列很多或者数据量很大时&#xff0c;如果使用select * 或者不指定分区进行全列或者全表扫描时效率很低。Hive在读取数据时&#xff0c;可以只读取查询中所需要的列&#xff0c;忽视其他的列&#xff0c;这样做可以节省读取开销…...

C语言100天练习题【记录本】

C语言经典100题&#xff08;手把手 编程&#xff09; 可以在哔哩哔哩找到&#xff08;url:C语言经典100题&#xff08;手把手 编程&#xff09;_哔哩哔哩_bilibili&#xff09; 已解决的天数&#xff1a;一&#xff0c;二&#xff0c;五&#xff0c;六&#xff0c;八&#xf…...

记录排查服务器CPU负载过高

1.top 命令查看cpu占比过高的进程id 这里是 6 2. 查看进程中占用CPU过高的线程 id 这里是9 top -H -p 6 ps -mp 6 -o THREAD,tid,time 使用jstack 工具 产看进程的日志 需要线程id转换成16进制 jstack 6 | grep “0x9” 4.jstack 6 可以看进程的详细日志 查看日志发现是 垃圾回…...

Spring Boot 项目中 Redis 常见问题及解决方案

目录 缓存穿透缓存雪崩缓存击穿Redis 连接池耗尽Redis 序列化问题总结 1. 缓存穿透 问题描述 缓存穿透是指查询一个不存在的数据&#xff0c;由于缓存中没有该数据&#xff0c;请求会直接打到数据库上&#xff0c;导致数据库压力过大。 解决方案 缓存空值&#xff1a;即使…...

基于Spring Boot的校园失物招领系统的设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

10 【HarmonyOS NEXT】 仿uv-ui组件开发之Avatar头像组件开发教程(一)

温馨提示&#xff1a;本篇博客的详细代码已发布到 git : https://gitcode.com/nutpi/HarmonyosNext 可以下载运行哦&#xff01; 目录 第一篇&#xff1a;Avatar 组件基础概念与设计1. 组件概述2. 接口设计2.1 形状类型定义2.2 尺寸类型定义2.3 组件属性接口 3. 设计原则4. 使用…...

OpenHarmony 5.0.0 Release

OpenHarmony 5.0.0 Release 版本概述 OpenHarmony 5.0.0 Release版本标准系统能力持续完善。相比OpenHarmony 5.0 Beta1&#xff0c;Release版本做出了如下特性新增或增强&#xff1a; 应用框架新增更多生命周期管理能力、提供子进程相关能力&#xff0c;可以对应用运行时的…...

RSA的理解运用与Pycharm组装Cryptodome库

1、RSA的来源 RSA通常指基于RSA算法的密码系统&#xff0c;令我没想到的是&#xff0c;其名字的来源竟然不是某个含有特别意义的单词缩写而成&#xff08;比如PHP&#xff1a;Hypertext Preprocessor(超文本预处理器)&#xff09;&#xff0c;而是由1977年提出该算法的三个歪果…...

Android 多用户相关

Android 多用户相关 本文主要记录下android 多用户相关的adb 命令操作. 1: 获取用户列表 命令: adb shell pm list users 输出如下: Users:UserInfo{0:机主:c13} running默认只有一个用户, id为0 &#xff0c;用户状态为运行 2: 创建新用户 命令&#xff1a; adb shell …...

第三课:异步编程核心:Callback、Promise与Async/Await

Node.js 是一个基于事件驱动的非阻塞 I/O 模型&#xff0c;这使得它非常适合处理高并发的网络请求。在 Node.js 中&#xff0c;异步编程是一项非常重要的技能。理解和掌握异步编程的不同方式不仅能提高代码的效率&#xff0c;还能让你更好地应对复杂的开发任务。本文将深入探讨…...

红果短剧安卓+IOS双端源码,专业短剧开发公司

给大家拆解一下红果短剧/河马短剧&#xff0c;这种看光解锁视频&#xff0c;可以挣金币的短剧APP。给大家分享一个相似的短剧APP源码&#xff0c;这个系统已接入穿山甲广告、百度广告、快手广告、腾讯广告等&#xff0c;类似红果短剧的玩法&#xff0c;可以看剧赚钱&#xff0c…...

C# ArrayPool

ArrayPool<T> 的作用ArrayPool<T> 的使用方式共享数组池自定义数组池 注意事项应用场景 在C#中&#xff0c;ArrayPool<T> 是一个非常有用的工具类&#xff0c;主要用于高效地管理数组的分配和回收&#xff0c;以减少内存分配和垃圾回收的压力。它属于 System…...

Conda 生态系统介绍

引言 Conda 是一个开源的包管理和环境管理系统,最初由 Continuum Analytics 开发,现为 Anaconda 公司维护。它在数据科学和 Python/R 生态中占据核心地位,因其能跨平台(Linux/Windows/macOS)管理依赖关系,并通过虚拟环境隔离不同项目的开发环境。Conda 的生态系统包含多…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

OCR MLLM Evaluation

为什么需要评测体系&#xff1f;——背景与矛盾 ​​ 能干的事&#xff1a;​​ 看清楚发票、身份证上的字&#xff08;准确率>90%&#xff09;&#xff0c;速度飞快&#xff08;眨眼间完成&#xff09;。​​干不了的事&#xff1a;​​ 碰到复杂表格&#xff08;合并单元…...

rm视觉学习1-自瞄部分

首先先感谢中南大学的开源&#xff0c;提供了很全面的思路&#xff0c;减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接&#xff1a;https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架&#xff1a; 代码框架结构&#xff1a;readme有…...