当前位置: 首页 > news >正文

基于YOLO11深度学习的运动品牌LOGO检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于深度学习的行人跌倒检测系统】
9.【基于深度学习的PCB板缺陷检测系统】10.【基于深度学习的生活垃圾分类目标检测系统】
11.【基于深度学习的安全帽目标检测系统】12.【基于深度学习的120种犬类检测与识别系统】
13.【基于深度学习的路面坑洞检测系统】14.【基于深度学习的火焰烟雾检测系统】
15.【基于深度学习的钢材表面缺陷检测系统】16.【基于深度学习的舰船目标分类检测系统】
17.【基于深度学习的西红柿成熟度检测系统】18.【基于深度学习的血细胞检测与计数系统】
19.【基于深度学习的吸烟/抽烟行为检测系统】20.【基于深度学习的水稻害虫检测与识别系统】
21.【基于深度学习的高精度车辆行人检测与计数系统】22.【基于深度学习的路面标志线检测与识别系统】
23.【基于深度学习的智能小麦害虫检测识别系统】24.【基于深度学习的智能玉米害虫检测识别系统】
25.【基于深度学习的200种鸟类智能检测与识别系统】26.【基于深度学习的45种交通标志智能检测与识别系统】
27.【基于深度学习的人脸面部表情识别系统】28.【基于深度学习的苹果叶片病害智能诊断系统】
29.【基于深度学习的智能肺炎诊断系统】30.【基于深度学习的葡萄簇目标检测系统】
31.【基于深度学习的100种中草药智能识别系统】32.【基于深度学习的102种花卉智能识别系统】
33.【基于深度学习的100种蝴蝶智能识别系统】34.【基于深度学习的水稻叶片病害智能诊断系统】
35.【基于与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于深度学习的智能草莓病害检测与分割系统】
37.【基于深度学习的复杂场景下船舶目标检测系统】38.【基于深度学习的农作物幼苗与杂草检测系统】
39.【基于深度学习的智能道路裂缝检测与分析系统】40.【基于深度学习的葡萄病害智能诊断与防治系统】
41.【基于深度学习的遥感地理空间物体检测系统】42.【基于深度学习的无人机视角地面物体检测系统】
43.【基于深度学习的木薯病害智能诊断与防治系统】44.【基于深度学习的野外火焰烟雾检测系统】
45.【基于深度学习的脑肿瘤智能检测系统】46.【基于深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于深度学习的橙子病害智能诊断与防治系统】48.【基于深度学习的车辆检测追踪与流量计数系统】
49.【基于深度学习的行人检测追踪与双向流量计数系统】50.【基于深度学习的反光衣检测与预警系统】
51.【基于深度学习的危险区域人员闯入检测与报警系统】52.【基于深度学习的高密度人脸智能检测与统计系统】
53.【基于深度学习的CT扫描图像肾结石智能检测系统】54.【基于深度学习的水果智能检测系统】
55.【基于深度学习的水果质量好坏智能检测系统】56.【基于深度学习的蔬菜目标检测与识别系统】
57.【基于深度学习的非机动车驾驶员头盔检测系统】58.【太基于深度学习的阳能电池板检测与分析系统】
59.【基于深度学习的工业螺栓螺母检测】60.【基于深度学习的金属焊缝缺陷检测系统】
61.【基于深度学习的链条缺陷检测与识别系统】62.【基于深度学习的交通信号灯检测识别】
63.【基于深度学习的草莓成熟度检测与识别系统】64.【基于深度学习的水下海生物检测识别系统】
65.【基于深度学习的道路交通事故检测识别系统】66.【基于深度学习的安检X光危险品检测与识别系统】
67.【基于深度学习的农作物类别检测与识别系统】68.【基于深度学习的危险驾驶行为检测识别系统】
69.【基于深度学习的维修工具检测识别系统】70.【基于深度学习的维修工具检测识别系统】
71.【基于深度学习的建筑墙面损伤检测系统】72.【基于深度学习的煤矿传送带异物检测系统】
73.【基于深度学习的老鼠智能检测系统】74.【基于深度学习的水面垃圾智能检测识别系统】
75.【基于深度学习的遥感视角船只智能检测系统】76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统】
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统】78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统】
79.【基于深度学习的果园苹果检测与计数系统】80.【基于深度学习的半导体芯片缺陷检测系统】
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统】82.【基于深度学习的运动鞋品牌检测与识别系统】
83.【基于深度学习的苹果叶片病害检测识别系统】84.【基于深度学习的医学X光骨折检测与语音提示系统】
85.【基于深度学习的遥感视角农田检测与分割系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

目录

  • 基本功能演示
  • 研究背景
  • 应用场景
  • 主要工作内容
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • 界面参数设置说明
    • 检测结果说明
    • 主要功能说明
    • (1)图片检测说明
    • (2)视频检测说明
    • (3)摄像头检测说明
    • (4)保存图片与视频检测说明
  • 二、YOLO11简介
  • 三、模型训练、评估与推理
    • 1. 数据集准备与训练
    • 2.模型训练
    • 3. 训练结果评估
    • 4. 使用模型进行推理
  • 四、可视化系统制作
    • Pyqt5详细介绍
    • 系统制作
  • 【获取方式】

基本功能演示

基于YOLO11深度学习的运动品牌LOGO检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】

摘要:在全球化、数字化时代,品牌识别对市场营销、消费者行为分析和知识产权保护很重要。在体育用品行业,运动品牌LOGO是品牌身份和价值的关键。传统LOGO检测方法依赖人工或简单图像匹配,效率低且准确性有限。本文基于YOLO11的深度学习框架,通过2002张实际场景中不同运动品牌LOGO的相关图片,训练了可进行运动品牌LOGO检测与识别的模型,可以很好的检测并识别实际场景中不运动品牌LOGO。最终基于训练好的模型制作了一款带UI界面的运动品牌LOGO检测与识别系统,更便于进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 研究背景
  • 应用场景
  • 主要工作内容
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • 界面参数设置说明
    • 检测结果说明
    • 主要功能说明
    • (1)图片检测说明
    • (2)视频检测说明
    • (3)摄像头检测说明
    • (4)保存图片与视频检测说明
  • 二、YOLO11简介
  • 三、模型训练、评估与推理
    • 1. 数据集准备与训练
    • 2.模型训练
    • 3. 训练结果评估
    • 4. 使用模型进行推理
  • 四、可视化系统制作
    • Pyqt5详细介绍
    • 系统制作
  • 【获取方式】

点击跳转至文末《完整相关文件及源码》获取


研究背景

在当今全球化和数字化的时代背景下,品牌识别对于市场营销、消费者行为分析以及知识产权保护等方面具有重要意义。特别是在体育用品行业,运动品牌的LOGO不仅是品牌身份的重要标识,也是品牌价值传递的关键元素。传统的品牌LOGO检测方法通常依赖于人工检查或简单的图像匹配技术,这些方法在处理大量数据时效率低下且准确性有限。基于YOLO深度学习框架开发的运动品牌LOGO检测与识别系统,能够实时自动识别并定位画面中的运动品牌LOGO及其类别,极大地提高了识别效率和准确性,为品牌管理和市场研究提供了强有力的技术支持。

应用场景

零售管理:帮助零售商通过摄像头监控店内商品展示情况,自动识别货架上的运动品牌LOGO,优化库存管理和商品陈列策略。
广告监测:用于评估广告投放效果,通过分析电视节目、社交媒体或户外广告中出现的品牌LOGO频率和曝光度,提供精准的数据支持。
赛事赞助分析:在大型体育赛事直播或录像中,快速识别运动员服装、场地围栏等位置的品牌LOGO,量化赞助商的投资回报率(ROI)。
品牌保护与打假:协助品牌所有者监测市场上未经授权使用其LOGO的行为,及时发现并打击假冒伪劣产品,维护品牌形象。
市场调研:收集不同地区、时间段内各种运动品牌LOGO的出现频率数据,为企业制定市场营销策略提供依据,了解竞争对手动态。

主要工作内容

本文的主要内容包括以下几个方面:

  1. 搜集与整理数据集:搜集整理实际场景中不同运动品牌LOGO的相关数据图片,并进行相应的数据标注与处理,为模型训练提供训练数据集;
  2. 训练模型:基于整理的数据集,根据最前沿的YOLOv11目标检测技术训练目标检测模型,实现对需要检测的对象进行有效检测的功能;
  3. 模型性能评估:对训练出的模型在验证集上进行了充分的结果评估和对比分析,主要目的是为了揭示模型在关键指标(如Precision、Recall、mAP50和mAP50-95等指标)上的表现情况
  4. 可视化系统制作:基于训练出的目标检测模型,搭配Pyqt5制作的UI界面,用python开发了一款界面简洁的软件系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存。其目的是为检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可用于实际场景中的运动品牌LOGO检测, 并识别不同品牌,分10个检测类别:['361度','阿迪达斯','安踏','鸿星尔克','卡帕','李宁','新百伦','耐克','彪马','特步'];
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时检测结果等信息;
4. 支持图片或者视频检测结果保存
5. 支持将图片的检测结果保存为csv文件;

界面参数设置说明

在这里插入图片描述

置信度阈值:也就是目标检测时的conf参数,只有检测出的目标框置信度大于该值,结果才会显示;
交并比阈值:也就是目标检测时的iou参数,对检测框重叠比例iou大于该阈值的目标框进行过滤【也就是说假如两检测框iou大于该值的话,会过滤掉其中一个,该值越小,重叠框会越少】;

检测结果说明

在这里插入图片描述

显示标签名称与置信度:表示是否在检测图片上标签名称与置信度,显示默认勾选,如果不勾选则不会在检测图片上显示标签名称与置信度;
总目标数:表示画面中检测出的目标数目;
目标选择:可选择单个目标进行位置信息、置信度查看。
目标位置:表示所选择目标的检测框,左上角与右下角的坐标位置。默认显示的是置信度最大的一个目标信息;

主要功能说明

功能视频演示见文章开头,以下是简要的操作描述。

(1)图片检测说明

点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。
点击保存按钮,会对检测结果进行保存,存储路径为:save_data目录下,同时会将图片检测信息保存csv文件
注:1.右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行目标切换。所有检测结果均在左下方表格中显示。

(2)视频检测说明

点击视频按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测说明

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。

(4)保存图片与视频检测说明

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存,对于图片图片检测还会保存检测结果为csv文件,方便进行查看与后续使用。检测的图片与视频结果会存储在save_data目录下。
注:暂不支持视频文件的检测结果保存为csv文件格式。

保存的检测结果文件如下:
在这里插入图片描述

图片文件保存的csv文件内容如下,包括图片路径、目标在图片中的编号、目标类别、置信度、目标坐标位置
注:其中坐标位置是代表检测框的左上角与右下角两个点的x、y坐标。
在这里插入图片描述

二、YOLO11简介

YOLO11源码地址:https://github.com/ultralytics/ultralytics

Ultralytics YOLO11是一款前沿的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。
在这里插入图片描述

YOLO11创新点如下:

YOLO 11主要改进包括:
增强的特征提取:YOLO 11采用了改进的骨干和颈部架构,增强了特征提取功能,以实现更精确的目标检测。
优化的效率和速度:优化的架构设计和优化的训练管道提供更快的处理速度,同时保持准确性和性能之间的平衡。
更高的精度,更少的参数:YOLO11m在COCO数据集上实现了更高的平均精度(mAP),参数比YOLOv8m少22%,使其在不影响精度的情况下提高了计算效率。
跨环境的适应性:YOLO 11可以部署在各种环境中,包括边缘设备、云平台和支持NVIDIA GPU的系统。
广泛的支持任务:YOLO 11支持各种计算机视觉任务,如对象检测、实例分割、图像分类、姿态估计和面向对象检测(OBB)。

三、模型训练、评估与推理

本文主要基于YOLO11n模型进行模型训练,训练完成后对模型在验证集上的表现进行全面的性能评估及对比分析。总体流程包括:数据集准备、模型训练、模型评估。

1. 数据集准备与训练

通过网络上搜集关于实际场景中不同运动品牌LOGO的相关图片,并使用Labelimg标注工具对每张图片进行标注,分10个检测类别['361度','阿迪达斯','安踏','鸿星尔克','卡帕','李宁','新百伦','耐克','彪马','特步']

最终数据集一共包含2002张图片,其中训练集包含1702张图片验证集包含300张图片
部分图像及标注如下图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据集各类别数目分布情况如下:
在这里插入图片描述

2.模型训练

准备好数据集后,将图片数据以如下格式放置在项目目录中。在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入Data目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv11在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: D:\2MyCVProgram\2DetectProgram\BrandLogoDetection_v11\datasets\Data/train/images
val: D:\2MyCVProgram\2DetectProgram\BrandLogoDetection_v11\datasets\Data/valid/imagesnc: 10
names: ['361', 'adidas', 'anta', 'erke', 'kappa', 'lining', 'nb', 'nike', 'puma', 'xtep']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,optimizer设定的优化器为SGD,训练代码如下:

#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')# 模型配置文件
model_yaml_path = "ultralytics/cfg/models/11/yolo11.yaml"
#数据集配置文件
data_yaml_path = 'datasets/Data/data.yaml'
#预训练模型
pre_model_name = 'yolo11n.pt'if __name__ == '__main__':#加载预训练模型model = YOLO(model_yaml_path).load(pre_model_name)#训练模型results = model.train(data=data_yaml_path,epochs=150,      # 训练轮数batch=4,         # batch大小name='train_v11', # 保存结果的文件夹名称optimizer='SGD') # 优化器

模型常用训练超参数参数说明:
YOLO11 模型的训练设置包括训练过程中使用的各种超参数和配置。这些设置会影响模型的性能、速度和准确性。关键的训练设置包括批量大小、学习率、动量和权重衰减。此外,优化器、损失函数和训练数据集组成的选择也会影响训练过程。对这些设置进行仔细的调整和实验对于优化性能至关重要。
以下是一些常用的模型训练参数和说明:

参数名默认值说明
modelNone指定用于训练的模型文件。接受指向 .pt 预训练模型或 .yaml 配置文件。对于定义模型结构或初始化权重至关重要。
dataNone数据集配置文件的路径(例如 coco8.yaml).该文件包含特定于数据集的参数,包括训练数据和验证数据的路径、类名和类数。
epochs100训练总轮数。每个epoch代表对整个数据集进行一次完整的训练。调整该值会影响训练时间和模型性能。
patience100在验证指标没有改善的情况下,提前停止训练所需的epoch数。当性能趋于平稳时停止训练,有助于防止过度拟合。
batch16批量大小,有三种模式:设置为整数(例如,’ Batch =16 ‘), 60% GPU内存利用率的自动模式(’ Batch =-1 ‘),或指定利用率分数的自动模式(’ Batch =0.70 ')。
imgsz640用于训练的目标图像尺寸。所有图像在输入模型前都会被调整到这一尺寸。影响模型精度和计算复杂度。
deviceNone指定用于训练的计算设备:单个 GPU (device=0)、多个 GPU (device=0,1)、CPU (device=cpu),或苹果芯片的 MPS (device=mps).
workers8加载数据的工作线程数(每 RANK 多 GPU 训练)。影响数据预处理和输入模型的速度,尤其适用于多 GPU 设置。
nameNone训练运行的名称。用于在项目文件夹内创建一个子目录,用于存储训练日志和输出结果。
pretrainedTrue决定是否从预处理模型开始训练。可以是布尔值,也可以是加载权重的特定模型的字符串路径。提高训练效率和模型性能。
optimizer'auto'为训练模型选择优化器。选项包括 SGD, Adam, AdamW, NAdam, RAdam, RMSProp 等,或 auto 用于根据模型配置进行自动选择。影响收敛速度和稳定性
lr00.01初始学习率(即 SGD=1E-2, Adam=1E-3) .调整这个值对优化过程至关重要,会影响模型权重的更新速度。
lrf0.01最终学习率占初始学习率的百分比 = (lr0 * lrf),与调度程序结合使用,随着时间的推移调整学习率。

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv11在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5值为0.636,结果还是可以的。
在这里插入图片描述

4. 使用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/361_0_00061_jpg.rf.92d9d13a3dcd76a08cdbf420e55ec6b4.jpg"# 加载预训练模型
model = YOLO(path, task='detect')# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("Detection Result", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

更多检测结果示例如下:
在这里插入图片描述
在这里插入图片描述

四、可视化系统制作

基于上述训练出的目标检测模型,为了给此检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。博主基于Pyqt5开发了一个可视化的系统界面,通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。【系统详细展示见第一部分内容】

Pyqt5详细介绍

关于Pyqt5的详细介绍可以参考之前的博客文章:《Python中的Pyqt5详细介绍:基本机构、部件、布局管理、信号与槽、跨平台》,地址:

https://a-xu-ai.blog.csdn.net/article/details/143273797

系统制作

博主基于Pyqt5框架开发了此款运动品牌LOGO检测与识别系统即文中第一部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。这不仅提升了系统的可用性和用户体验,还使得检测过程更加直观透明,便于结果的实时观察和分析。此外,GUI还可以集成其他功能,如检测结果的保存与导出、检测参数的调整,从而为用户提供一个全面、综合的检测工作环境,促进智能检测技术的广泛应用。
在这里插入图片描述

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、训练好的模型、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注末尾名片GZH【阿旭算法与机器学习】,发送【源码】获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。


好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

相关文章:

基于YOLO11深度学习的运动品牌LOGO检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…...

纯html文件实现目录和文档关联

目录结构 效果图 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>项目结题报告</title><style lang"scss">::-webkit-scrollbar {width: 6px;height: 6px;}::-webkit-scro…...

C# | 委托 | 事件 | 异步

委托&#xff08;Delegate&#xff09;和事件&#xff08;Event&#xff09; 在C#和C中&#xff0c;委托&#xff08;Delegate&#xff09;与事件&#xff08;Event&#xff09;以及函数对象&#xff08;Function Object&#xff09;是实现回调机制或传递行为的重要工具。虽然…...

数据结构——顺序表与链表

1. 基础介绍 1、线性结构&#xff1a; 如果一个数据元素序列满足&#xff1a; &#xff08;1&#xff09;除第一个和最后一个数据元素外&#xff0c;每个数据元素只有一个前驱数据元素和一个后继数据元素&#xff1b; &#xff08;2&#xff09;第一个数据元素没有前驱数据…...

【uniapp】图片添加canvas水印

目录 需求&背景实现地理位置添加水印 ios补充 需求&背景 需求&#xff1a;拍照后给图片添加水印, 水印包含经纬度、用户信息、公司logo等信息。 效果图&#xff1a; 方案&#xff1a;使用canvas添加水印。 具体实现&#xff1a;上传图片组件是项目里现有的&#xff…...

ElementUI 级联选择器el-cascader启用选择任意一级选项,选中后关闭下拉框

1、启用选择任意一级选项 在 el-cascader 标签上加上配置项&#xff1a; :props"{ checkStrictly: true }"例如&#xff1a; <el-cascaderref"selectedArrRef"v-model"selectedArr":options"optionsList":props"{ checkStri…...

【音视频】ffplay常用命令

一、 ffplay常用命令 -x width&#xff1a;强制显示宽度-y height&#xff1a;强制显示高度 强制以 640*360的宽高显示 ffplay 2.mp4 -x 640 -y 360 效果如下 -fs 全屏显示 ffplay -fs 2.mp4效果如下&#xff1a; -an 禁用音频&#xff08;不播放声音&#xff09;-vn 禁…...

5人3小时复刻Manus?开源OpenManus项目全解剖,我的DeepSeek股票报告这样诞生

大家好,我是大 F,深耕AI算法十余年,互联网大厂技术岗。分享AI算法干货、技术心得。 更多文章可关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能! OpenManus是什么 1. 项目背景 OpenManus 是由 MetaGPT 核心团队仅用 3 小时复刻而成的开源…...

【Python运维】用Python自动化AWS资源管理:利用boto3实现高效管理S3桶和EC2实例

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 随着云计算的普及,AWS(Amazon Web Services)已经成为许多企业和开发者首选的云平台。为了提高工作效率,自动化管理AWS资源成为了一个热…...

django各种mixin用法

在 Django 中,Mixin 是一种用于扩展类功能的设计模式。通过 Mixin,可以在不修改原有类的情况下,为其添加新的方法或属性。Django 中的 Mixin 广泛应用于视图(View)、表单(Form)、模型(Model)等组件中。以下是 Django 中常见 Mixin 的用法和示例: 一、视图(View)中的…...

Java 大视界 -- Java 大数据在智能教育考试评估与学情分析中的应用(112)

&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎来到 青云交的博客&#xff01;能与诸位在此相逢&#xff0c;我倍感荣幸。在这飞速更迭的时代&#xff0c;我们都渴望一方心灵净土&#xff0c;而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识&#xff0c;也…...

Manus AI : Agent 元年开启.pdf

Manus AI : Agent 元年开启.pdf 是由华泰证券出品的一份调研报告&#xff0c;共计23页。报告详细介绍了Manus AI 及 Agent&#xff0c;主要包括Manus AI 的功能、优势、技术能力&#xff0c;Agent 的概念、架构、应用场景&#xff0c;以及 AI Agent 的类型和相关案例&#xff0…...

【计算机网络】计算机网络的性能指标——时延、时延带宽积、往返时延、信道利用率

计算机网络的性能指标 导读 大家好&#xff0c;很高兴又和大家见面啦&#xff01;&#xff01;&#xff01; 在上一篇内容中我们介绍了计算机网络的三个性能指标——速率、带宽和吞吐量。用大白话来说就是&#xff1a;网速、最高网速和实时网速。 相信大家看到这三个词应该就…...

FreeRTOS第15篇:FreeRTOS链表实现细节03_List_t与ListItem_t的奥秘

文/指尖动听知识库-星愿 文章为付费内容,商业行为,禁止私自转载及抄袭,违者必究!!! 文章专栏:深入FreeRTOS内核:从原理到实战的嵌入式开发指南 1 FreeRTOS列表的核心数据结构 FreeRTOS的列表实现由两个关键结构体组成:List_t(列表)和ListItem_t(列表项)。它们共同…...

git 添加额外的远程仓库 URL

要使用 git branch -a 查看 net-next 远程仓库中的所有分支&#xff0c;请按照以下步骤操作&#xff1a; 步骤 1: 确保已添加 net-next 远程仓库 如果尚未添加 net-next 远程仓库&#xff0c;请运行以下命令&#xff1a; git remote add net-next git://git.kernel.org/pub/s…...

不同类型光谱相机的技术差异比较

一、波段数量与连续性 ‌多光谱相机‌ 波段数&#xff1a;通常4-9个离散波段&#xff0c;光谱范围集中于400-1000nm‌。 数据特征&#xff1a;光谱呈阶梯状&#xff0c;无法连续覆盖&#xff0c;适用于中等精度需求场景&#xff08;如植被分类&#xff09;‌。 ‌高光谱相机…...

Swift系列01-Swift语言基本原理与设计哲学

本文将深入探讨Swift的核心原理、设计理念以及与Objective-C的对比 1. Swift与Objective-C的架构差异分析 Swift和Objective-C尽管可以无缝协作&#xff0c;但它们的架构设计存在本质差异。 1.1语言范式 Objective-C是一种动态语言&#xff0c;建立在C语言之上并添加了Smal…...

《OpenCV》——dlib(人脸应用实例)

文章目录 dlib库dlib库——人脸应用实例——表情识别dlib库——人脸应用实例——疲劳检测 dlib库 dlib库的基础用法介绍可以参考这篇文章&#xff1a;https://blog.csdn.net/lou0720/article/details/145968062?spm1011.2415.3001.5331&#xff0c;故此这篇文章只介绍dlib的人…...

以太网通讯

接口开发笔记-WebApi-CSDN博客 以太网常用通讯协议 1、modbus tcp using EasyModbus; using System;class Program {static void Main(string[] args){// 创建Modbus客户端实例ModbusClient modbusClient new ModbusClient("192.168.1.100"); // IP地址modbusCli…...

UDP学习笔记(一)为什么UDP需要先将数据转换为字节数组

UDP 发送数据时需要先将数据转换为字节数组再发送&#xff0c;主要是因为计算机网络传输的最基本单位是“字节”&#xff08;Byte&#xff09;。让我们从以下几个方面来深入理解这个设计选择&#xff1a; 1. 计算机网络只能传输“字节” 在网络通信中&#xff0c;无论是 TCP 还…...

数据分析/数据科学常见SQL题目:连续登录用户、留存率、最大观看人数

文章目录 1. SQL的执行顺序是什么&#xff1f;on和join谁先执行&#xff0c;为什么&#xff1f;on和where的区别&#xff1f;2. 已知表user,字段id, date&#xff0c;求新用户的次日留存率3. 已知表user&#xff0c;字段id&#xff0c;date&#xff0c;求每个日期新用户的次日留…...

【Conda】Windows安装conda/Anaconda环境

安装conda并配置powershell 访问该网址&#xff0c;下载安装即可&#xff1a; Anaconda下载 安装完成后&#xff0c;打开Anaconda&#xff0c;并访问Powershell Prompt 弹出Windows Terminal&#xff0c;并正常进入Conda 【非必须】如果不是通过Windows Terminal打开&#x…...

olmOCR:高效精准的 PDF 文本提取工具

在日常的工作和学习中&#xff0c;是否经常被 PDF 文本提取问题困扰&#xff1f;例如&#xff1a; 想从学术论文 PDF 中提取关键信息&#xff0c;却发现传统 OCR 工具识别不准确或文本格式混乱&#xff1f;需要快速提取商务合同 PDF 中的条款内容&#xff0c;却因工具不给力而…...

数字投屏叫号器-发射端python窗口定制

窗口 本系列前章介绍&#xff0c;叫号器的显示端&#xff0c;完成了视频音频的形成和传输的介绍。本章节开始定制小窗口。 最终实现&#xff0c;处于桌面最前端&#xff0c;发送指令&#xff0c;集合前篇即可完成&#xff1a; 处理本地text.txt更新&#xff0c;随之被rtsp采集…...

从零开始实现大语言模型(十四):高阶训练技巧

1. 前言 预训练大语言模型的流程与训练普通神经深度网络模型本质上并没有任何不同。可以使用深度学习实践中已经被证明非常有效的高阶训练技巧&#xff0c;优化大语言模型预训练流程&#xff0c;使大语言模型预训练效率更高&#xff0c;训练过程更稳定。 本文介绍深度学习领域…...

Spring-framework源码编译

版本统一&#xff08;搭配其他版本会遇到不可知错误&#xff09;&#xff1a; 1&#xff09;spring 5.2.X&#xff08;5.5.26&#xff09; 2&#xff09;JDK8 3&#xff09;Gradle:5.6.4 可以在gradle-wrapper.properties中修改 https\://services.gradle.org/distribution…...

分布式系统的核心挑战与解决方案

1、分布式系统的引入 在移动互联网、云计算和物联网的推动下&#xff0c;现代软件系统需要处理亿级用户请求、PB级数据存储和毫秒级响应需求。传统的单体架构受限于单机性能瓶颈和容灾能力&#xff0c;逐渐被分布式系统取代。例如&#xff0c;电商平台在“双十一”期间需应对每…...

fastjson漏洞

fastjson漏洞 fastjson工作原理攻击原理补充 例子 fastjson工作原理 fastjson的作用是将JAVA对象转换成对应的json表示形式&#xff0c;也可以反过来将json转化为对应的Java对象。fastjson使用AutoType功能进行反序列化&#xff0c;AutoType使用type标记字符的原始类型&#x…...

upload-labs详解(13-20)文件上传分析

目录 upload-labs-env upload-labs-env第十三关 文件包含漏洞 代码 测试 上传一个.jpg图片 上传一个.png文件 上传一个.gif图片 upload-labs-env第十四关 代码 思路 upload-labs-env第十五关 代码 思路 upload-labs-env第十六关 代码 思路 测试 上传gif格式…...

HTML第四节

一.复合选择器 1.后代选择器 注&#xff1a;1.后代选择器会选中后代所有的要选择的标签 2.儿子选择器 3.并集选择器 注&#xff1a;1.注意换行&#xff0c;同时选中多种标签 4.交集选择器 注&#xff1a;1.标签选择器放在最前面&#xff0c;例如放在类选择器的前面 2.两个选择…...