AI 实战 - pytorch框架基于retinaface实现face检测
pytorch框架基于retinaface实现face检测
- 简介
- 模型结构
- MobileNet-0.25
- SSH结构
- Head结构
- Anchor编解码
- 环境
- 开发环境
- 数据
- 简介
- 训练
- 测试
- 参考
简介
RetinaFace是在RetinaNet基础上引申出来的人脸检测框架,所以大致结构和RetinaNet非常像。
主要改进:1.MobileNet-0.25作为Backbone,当然也有ResNet版本。2.Head中增加关键点检测。3.Multi-task Loss4.论文地址:https://arxiv.org/pdf/1905.00641.pdf5.官方代码(mxnet):https://github.com/deepinsight/insightface/tree/master/RetinaFace6.大牛Pytorch版:oaifaye/retinafaceoaifaye/retinafaceoaifaye/retinaface
模型结构

MobileNet-0.25
图中ConvDepthwise指MobileNet中的Depthwise Separable Convolution(深度可分离卷积),常规卷积在提取图像 特征图内特征相关性 的同时也提取 特征图通道间特征相关性,这样参数多而且难以解释。ConvDepthwise将这两项工作分开来做,减少了参数而且提高了可解释性。
ConvDepthwise结构如下:先做3x3的卷积,并且groups设置成输入通道数,这组卷积核只负责提取每个特征图的特征,同时计算量大大减少然后做1x1的卷积用于改变通道数,这组1x1的卷积核只提取通道间的特征相关性,同时参数大大减少。两组操作处理后计算量和参数量降低,可解释性提升。
# 代码实现
def conv_dw(inp, oup, stride = 1, leaky=0.1):return nn.Sequential(nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),nn.BatchNorm2d(inp),nn.LeakyReLU(negative_slope= leaky,inplace=True),nn.Conv2d(inp, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup),nn.LeakyReLU(negative_slope= leaky,inplace=True),)
### FPN结构 FPN 特征金字塔,多用于目标检测,因为目标有大有小,所以不同的特征层做融合有助于检测不同尺度的目标。
这里FPN取了三个关键特征层,然后将通道数都处理成64,这样三个关键特征层由浅到深分别是1,64,80,80、1,64,40,40、1,64,20,20。深层的关键特征层经过2x的Upsampling与浅层进行融合,最后三个融合后的分支分别输出到SSH结构。
SSH结构
SSH(Single Stage Headless)模块可以进一步增加感受野,进一步加强特征提取, SSH利用的也是多尺度特征融合的思想,融合了三路不同深度的特征,最后cancat到一起,输出和输入尺寸不变。结构如下:

class SSH(nn.Module):def __init__(self, in_channel, out_channel):super(SSH, self).__init__()assert out_channel % 4 == 0leaky = 0if (out_channel <= 64):leaky = 0.1# 3x3卷积self.conv3X3 = conv_bn_no_relu(in_channel, out_channel//2, stride=1)# 利用两个3x3卷积替代5x5卷积self.conv5X5_1 = conv_bn(in_channel, out_channel//4, stride=1, leaky = leaky)self.conv5X5_2 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1)# 利用三个3x3卷积替代7x7卷积self.conv7X7_2 = conv_bn(out_channel//4, out_channel//4, stride=1, leaky = leaky)self.conv7x7_3 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1)def forward(self, inputs):conv3X3 = self.conv3X3(inputs)conv5X5_1 = self.conv5X5_1(inputs)conv5X5 = self.conv5X5_2(conv5X5_1)conv7X7_2 = self.conv7X7_2(conv5X5_1)conv7X7 = self.conv7x7_3(conv7X7_2)# 所有结果堆叠起来out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)out = F.relu(out)return out
Head结构
Head分三种:BboxHead:框的回归预测结果用于对先验框进行调整获得预测框,即解码前的bounding box的中心点偏移量和宽高。ClsHead:分类预测结果用于判断先验框内部是否包含脸。LdmHead:解码前的五官关键点坐标。
每个单元的使用两个1:1比例的Anchor(anchor_num=2),三个Head结构如下图。

class ClassHead(nn.Module):def __init__(self,inchannels=512,num_anchors=2):super(ClassHead,self).__init__()self.num_anchors = num_anchorsself.conv1x1 = nn.Conv2d(inchannels,self.num_anchors*2,kernel_size=(1,1),stride=1,padding=0)def forward(self,x):out = self.conv1x1(x)out = out.permute(0,2,3,1).contiguous()return out.view(out.shape[0], -1, 2)class BboxHead(nn.Module):def __init__(self,inchannels=512,num_anchors=2):super(BboxHead,self).__init__()self.conv1x1 = nn.Conv2d(inchannels,num_anchors*4,kernel_size=(1,1),stride=1,padding=0)def forward(self,x):out = self.conv1x1(x)out = out.permute(0,2,3,1).contiguous()out = out.view(out.shape[0], -1, 4)return outclass LandmarkHead(nn.Module):def __init__(self,inchannels=512,num_anchors=2):super(LandmarkHead,self).__init__()self.conv1x1 = nn.Conv2d(inchannels,num_anchors*10,kernel_size=(1,1),stride=1,padding=0)def forward(self,x):out = self.conv1x1(x)out = out.permute(0,2,3,1).contiguous()return out.view(out.shape[0], -1, 10)
Anchor编解码
环境
开发环境
- GPU服务器:pytorch1.13.0,python3.10,cuda==11.7
- nvidia-smi 查看 CUDA 版本
conda create -n retinaface python=3.7
conda activate retinaface
pip3 install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install tensorboard scipy numpy matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install opencv_python Pillow==9.4.0 h5py -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install tqdm -i https://pypi.tuna.tsinghua.edu.cn/simple
数据
简介
Wider Face数据集,标记使用retinaface_gt_v1.1.zip
训练
测试
参考
通俗解读人脸检测框架-RetinaFace
相关文章:
AI 实战 - pytorch框架基于retinaface实现face检测
pytorch框架基于retinaface实现face检测 简介模型结构MobileNet-0.25SSH结构Head结构 Anchor编解码 环境开发环境 数据简介 训练测试参考 简介 RetinaFace是在RetinaNet基础上引申出来的人脸检测框架,所以大致结构和RetinaNet非常像。 主要改进:1.Mobi…...
如何在PHP中实现API版本管理:保持向后兼容性
如何在PHP中实现API版本管理:保持向后兼容性 在现代Web开发中,API(应用程序编程接口)是连接前端和后端的关键桥梁。随着业务需求的不断变化,API的版本管理变得尤为重要。良好的版本管理策略不仅能够确保新功能的顺利引…...
Docker Compose企业示例
利用容器编排完成haproxy和nginx负载均衡架构实施 1.mkdir docker.test 2.touch haproxy.yml 3.mkdir /var/lib/docker/volumes/conf 4.dnf install haproxy -y --downloadonly --downloaddir/xixi:下载内容到/xixi目录下 5. rpm2cpio haproxy-2.4.22-4.el9.x8…...
TMS320F28P550SJ9学习笔记6:SCI所有寄存器__结构体寄存器方式配置 SCI通信初始化__库函数发送测试
继续学习如何使用结构体寄存器的方式配置这款单片机的外设,这里配置SCI通信的初始化 但SCI gpio 的初始化还是调用的库函数比较方便,它的发送部分页调用了库函数 有关收发方面的逻辑,我会在之后重新自己写一次 文章提供测试代码讲解、完整…...
详细探索如何用脚本实现M小ySQL一键安装与配置,提升运维效率!
以下是基于脚本实现MySQL一键安装与配置的详细方案,涵盖Linux主流系统(CentOS/Ubuntu)及Windows环境,结合自动化部署与高可用性扩展,旨在提升运维效率: 一、Linux系统(CentOS 7.x)一…...
无人机推流/RTMP视频推拉流:EasyDSS无法卸载软件的原因及解决方法
视频推拉流/直播点播EasyDSS平台支持音视频采集、视频推拉流、播放H.265编码视频、存储、分发等视频能力服务,在应用场景中可实现视频直播、点播、转码、管理、录像、检索、时移回看等。此外,平台还支持用户自行上传视频文件,也可将上传的点播…...
增删改查 数据下载 一键编辑 删除
index 首页 <template><div class"box"><el-card :style"{ width: treeButton ? 19.5% : 35px, position: relative, transition: 1s }"><el-tree v-if"treeButton" :data"treeData" :props"defaultPro…...
【Go学习实战】03-2-博客查询及登录
【Go学习实战】03-2-博客查询及登录 读取数据库数据初始化数据库首页真实数据分类查询分类查询测试 文章查询文章查询测试 分类文章列表测试 登录功能登录页面登录接口获取json参数登录失败测试 md5加密jwt工具 登录成功测试 文章详情测试 读取数据库数据 因为我们之前的数据都…...
回溯算法(C/C++)
目录 一、组合问题 组合 组合剪枝 组合总和 III编辑 组合总和编辑 组合总和 II 电话号码的字母组合编辑 二、分割问题 分割回文串 复原 IP 地址 三、集合问题 子集 子集 II 非递减子序列 四、排列问题 全排列 全排列 II 五、棋盘问题 N 皇后 课程&#x…...
物联网智慧农业一体化解决方案-可继续扩展更多使用场景
在智慧农业中,从种子、施肥、灌溉、锄地、农具管理、日常照料到蔬菜档案管理,以及与客户、供应商、市场的对接,可以通过物联网(IoT)、大数据、人工智能(AI)、区块链和云计算等技术,构建一个从生产到销售的全流程数字化、智能化农业生态系统。以下是实现方案和技术路径的…...
Jackson 详解
目录 前言 Jackson 是 Java 生态中最流行的 JSON 处理库之一,广泛应用于 RESTful API、数据存储和传输等场景。它提供了高效、灵活的 JSON 序列化和反序列化功能,支持注解、模块化设计和多种数据格式(如 XML、YAML)。本文将详细介…...
游戏引擎学习第143天
仓库:https://gitee.com/mrxiao_com/2d_game_3 回顾并规划今天的内容 目前,我们正在进行声音混合的开发。我们已经写好了声音混合器,并且已经实现了一些功能,比如声音流播放和音量插值。过去一周我们做了很多工作,进展非常快。不…...
SLAM评估工具安装及使用EVO(Ubuntu20.04安装evo)--缺少 onnx 库还有Pandas 版本不兼容解决
介绍一下我的是ubuntu20.04.机载电脑是orinnx,通过源码烧写的系统。 首先打开终端,输入 pip install evo --upgrade --no-binary evo 安装过程中出现如下问题 缺少 onnx 库还有Pandas 版本不兼容, ONNX(Open Neural Network E…...
Nginx解决前端跨域问题
1. 理解 CORS 和同源策略 1.1 同源策略 同源策略是一种浏览器安全机制,用于阻止不同源(不同域名、协议或端口)的 Web 应用相互访问数据。它确保了 Web 应用的隔离性,防止恶意网站访问用户数据或执行不安全的操作。 同源策略下&…...
ReferenceError: assignment to undeclared variable xxx
🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》、《前端求职突破计划》 🍚 蓝桥云课签约作者、…...
国产编辑器EverEdit - 宏功能介绍
1 宏 1.1 应用场景 宏是一种重复执行简单工作的利器,可以让用户愉快的从繁琐的工作中解放出来,其本质是对键盘和菜单的操作序列的录制,并不会识别文件的内容,属于无差别无脑执行。 特别是对一些有规律的重复按键动作,…...
图像滑块对比功能的开发记录
背景介绍 最近,公司需要开发一款在线图像压缩工具,其中的一个关键功能是让用户直观地比较压缩前后的图像效果。因此,我们设计了一个对比组件,它允许用户通过拖动滑块,动态调整两张图像的显示区域,从而清晰…...
【计算机网络】Socket
Socket 是网络通信的核心技术之一,充当应用程序与网络协议栈之间的接口。 1. Socket 定义 Socket(套接字)是操作系统提供的 网络通信抽象层,允许应用程序通过标准接口(如 TCP/IP 或 UDP)进行数据传输。它…...
Electron应用中获取设备唯一ID和系统信息
让我创建一篇关于如何在Electron应用中获取设备唯一ID和系统信息,并在登录时使用这些信息的博客文章。我将确保步骤明确、条理清晰,适合初学者和有经验的开发者。 这篇博客应包含以下部分: 介绍 - 为什么需要获取设备信息前提条件和安装依赖…...
文件上传漏洞:upload-labs靶场11-20
目录 pass-11 pass-12 pass-13 pass-14 pass-15 pass-16 pass-17 pass-18 pass-19 pass-20 pass-11 分析源代码 ,发现上传文件的存放路径可控 if(isset($_POST[submit])){$ext_arr array(jpg,png,gif);$file_ext substr($_FILES[upload_file][name],st…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
