Python卷积神经网络(CNN)来识别和计数不同类型的工业零件
以下三种类型工业零件为例,使用卷积神经网络(CNN)来识别和计数不同类型的工业零件。以下是Python实现步骤:

-
数据准备:收集并标注包含不同形状(如方形、圆形、扇形)的工业零件图像数据集。
-
模型选择:选择一个预训练的深度学习模型(如ResNet、VGG或MobileNet)作为基础模型,并进行微调。
-
模型训练:使用标注好的数据集训练模型,使其能够识别不同形状的零件。
-
零件计数:在测试图像上应用训练好的模型,识别并计数不同类型的零件。
代码示例如下,使用Keras和TensorFlow来实现这个系统:
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np# 1. 数据准备
train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)train_generator = train_datagen.flow_from_directory('path_to_dataset',target_size=(150, 150),batch_size=32,class_mode='categorical',subset='training'
)validation_generator = train_datagen.flow_from_directory('path_to_dataset',target_size=(150, 150),batch_size=32,class_mode='categorical',subset='validation'
)# 2. 模型选择
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(128, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(128, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Flatten(),layers.Dense(512, activation='relu'),layers.Dense(3, activation='softmax') # 3 classes: square, circle, sector
])# 3. 模型训练
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])history = model.fit(train_generator,steps_per_epoch=train_generator.samples // train_generator.batch_size,validation_data=validation_generator,validation_steps=validation_generator.samples // validation_generator.batch_size,epochs=10
)# 4. 零件计数
from tensorflow.keras.preprocessing import imagedef count_parts(image_path):img = image.load_img(image_path, target_size=(150, 150))img_array = image.img_to_array(img)img_array = np.expand_dims(img_array, axis=0)img_array /= 255.0predictions = model.predict(img_array)predicted_class = np.argmax(predictions, axis=1)class_labels = {0: 'square', 1: 'circle', 2: 'sector'}return class_labels[predicted_class[0]]# 示例:计数图像中的零件
image_path = 'path_to_test_image'
print(f"The part in the image is a: {count_parts(image_path)}")
相关文章:
Python卷积神经网络(CNN)来识别和计数不同类型的工业零件
以下三种类型工业零件为例,使用卷积神经网络(CNN)来识别和计数不同类型的工业零件。以下是Python实现步骤: 数据准备:收集并标注包含不同形状(如方形、圆形、扇形)的工业零件图像数据集。 模型…...
MoonSharp 文档二
目录 6.Sharing objects 我们先来简单谈谈类型描述符 先说类型描述 稍微复杂一点 调用静态成员 应该使用 “:” 还是 “.” 重载 ByRef 参数(C# 中的 ref/out) 索引器 userdata 上的运算符和元方法 扩展方法 事件 关于 InteropAccessMode 的…...
android 支持自定义布局、线程安全、避免内存泄漏的 Toast 工具类
支持自定义布局:可以灵活地显示自定义样式的 Toast。 线程安全:确保在主线程中显示 Toast,避免崩溃。 避免内存泄漏:使用 ApplicationContext 和取消机制,防止内存泄漏问题。 工具类:作为一个通用的工具…...
景联文科技:以精准数据标注赋能AI进化,构筑智能时代数据基石
在人工智能技术席卷全球的浪潮中,高质量数据已成为驱动AI模型进化的核心燃料。作为全球领先的AI数据服务解决方案提供商,景联文科技深耕数据标注领域多年,以技术为基、以专业为本,致力于为全球客户提供全场景、高精度、多模态的数…...
Mysql的卸载安装配置以及简单使用
MySQL其它问题已经更新在:MySQL完善配置---可视化-CSDN博客 一、卸载 ①控制面板卸载 ②C盘隐藏项目>ProgramData>mysql相关文件夹,还有Program file下的MySQL文件夹 ③开始菜单栏搜索>服务,找到MySQL相关服务删除,如果再…...
使用 ResponseBodyEmitter 实现异步响应式数据流处理
1. 概述 1.1 什么是 ResponseBodyEmitter ResponseBodyEmitter 是 Spring MVC 提供的一个接口,用于支持异步返回响应数据流。它允许在控制器方法中逐步发送数据给客户端,而无需一次性生成完整的响应。 1.2 使用场景 实时数据推送(如股票行情、聊天消息等)。大量数据分批…...
Uniapp项目运行到微信小程序、H5、APP等多个平台教程
摘要:Uniapp作为一款基于Vue.js的跨平台开发框架,支持“一次开发,多端部署”。本文将手把手教你如何将Uniapp项目运行到微信小程序、H5、APP等多个平台,并解析常见问题。 一、环境准备 在开始前,请确保已安装以下工具…...
Ubuntu 下 nginx-1.24.0 源码分析 - cycle->modules[i]->type
Nginx 中主要有以下几种模块类型 类型 含义 NGX_CORE_MODULE 核心模块(如进程管理、错误日志、配置解析)。 NGX_EVENT_MODULE 事件模块(如 epoll、kqueue 等 IO 多路复用机制的实现)。 NGX_HTTP_MODULE HTTP 模块…...
基于SpringBoot的“文物管理系统”的设计与实现(源码+数据库+文档+PPT)
基于SpringBoot的“文物管理系统”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SpringBoot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统总体功能模块图 E-R实体图 系统首页界面 系统…...
dify + ollama + deepseek-r1+ stable-diffusion 构建绘画智能体
故事背景 stable-diffusion 集成进 dify 后,我们搭建一个小智能体,验证下文生图功能 业务流程 #mermaid-svg-6nSwwp69eMizP6bt {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-6nSwwp69eMiz…...
Android原生gif动图加载AnimatedImageDrawable
Android原生gif动图加载AnimatedImageDrawable 从Android P(9.0)开始,Android系统支持gif动图的原生控件AnimatedImageDrawable,可以播放加载gif动图。 AnimatedImageDrawable官方文档链接: https://developer.andro…...
Windows 系统 Docker Desktop 入门教程:从零开始掌握容器化技术
文章目录 前言一、Docker 简介二、Docker Desktop 安装2.1 系统要求2.2 安装步骤 三、Docker 基本概念四、Docker 常用命令五、实战:运行你的第一个容器5.1 拉取并运行 Nginx 容器5.2 查看容器日志5.3 停止并删除容器 六、总结 前言 随着云计算和微服务架构的普及&…...
记录小白使用 Cursor 开发第一个微信小程序(二):创建项目、编译、预览、发布(250308)
文章目录 记录小白使用 Cursor 开发第一个微信小程序(二):创建项目、编译、预览、发布(250308)一、创建项目1.1 生成提示词1.2 生成代码 二、编译预览2.1 导入项目2.2 编译预览 三、发布3.1 在微信开发者工具进行上传3…...
实战 - 使用 AutoAWQ 进行量化
文章目录 一、准备1、安装 autoawq2、模型准备 二、量化config.json 文件变化 三、加载量化后模型量化后的输出原始输出对比 四、查看模型的精度1、查看模型卡2、查看 config.json 中的 torch_dtype3、打印模型信息4、model.dtype 未必是模型精度 一、准备 1、安装 autoawq p…...
C++20 格式化库:强大的字符串格式化工具
文章目录 格式化语法常见用法1. 填充和对齐2. 数值格式化3. 进制格式化4. 自定义类型 示例代码注意事项 C20 的格式化库是一个强大的工具,用于处理字符串的格式化操作。它提供了类似于 Python 中 str.format() 的功能,但语法和用法更符合 C 的风格。以下…...
【一文学会 HTML5】
目录 HTML概述基本概念HTML 发展历程HTML 基本结构 网页基本标签标题标签(<h1> - <h6>)段落标签(<p>)换行标签(<br>)水平线标签(<hr>)注释࿰…...
如何在WPS中接入DeepSeek并使用OfficeAI助手(超细!成功版本)
目录 第一步:下载并安装OfficeAI助手 第二步:申请API Key 第三步:两种方式导入WPS 第一种:本地大模型Ollama 第二种APIKey接入 第四步:探索OfficeAI的创作功能 工作进展汇报 PPT大纲设计 第五步:我的使用体验(体验建议) …...
蓝耘智算 + 通义万相 2.1:为 AIGC 装上 “智能翅膀”,翱翔创作新天空
1. 引言:AIGC 的崛起与挑战 在过去几年中,人工智能生成内容(AIGC)技术突飞猛进。AIGC 涉及了文本生成、图像创作、音乐创作、视频制作等多个领域,并逐渐渗透到日常生活的方方面面。传统的内容创作方式已经被许多人类创…...
电脑如何在系统默认的壁纸中切换自己喜欢的
1、声明:该切换壁纸仅支持win10。 当你想去切换系统默认的壁纸,但是不知道该怎么切换,别慌,小亦教你几招帮你快速切换自定义壁纸。 我们平常使用的win10桌面壁纸大部分都是 简单、朴素的壁纸,但如果你想要切换自己喜…...
【大模型安全】安全解决方案
【大模型安全】安全解决方案 1.技术层面2.数据层面数据收集阶段训练阶段模型推理阶段 1.技术层面 在使用大语言模型时,通常有几种选择:一种是采用封装好的大语言模型SaaS云服务;另一种是在公有云上部署自有的大语言模型,并通过权…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
