当前位置: 首页 > news >正文

深度学习模型组件之优化器--自适应学习率优化方法(Adadelta、Adam、AdamW)

深度学习模型组件之优化器–自适应学习率优化方法(Adadelta、Adam、AdamW)

文章目录

  • 深度学习模型组件之优化器--自适应学习率优化方法(Adadelta、Adam、AdamW)
      • 1. Adadelta
        • 1.1 公式
        • 1.2 优点
        • 1.3 缺点
        • 1.4 应用场景
      • 2. Adam (Adaptive Moment Estimation)
        • 2.1 公式
        • 2.2 优点
        • 2.3 缺点
        • 2.4 应用场景
      • 3. AdamW
        • 3.1 公式
        • 3.2 优点
        • 3.3 缺点
        • 3.4 应用场景
      • 4.总结

在深度学习中,优化器是训练过程中不可或缺的一部分。不同的优化器通过调整学习率和更新规则来帮助模型收敛得更快、更好。本文将详细介绍三种常用的优化器: AdadeltaAdamAdamW,并展示它们的核心公式、工作原理、优缺点以及应用场景。


1. Adadelta

1.1 公式

Adadelta 的核心公式如下:

在这里插入图片描述

其中:

  • Δθt是参数更新;
  • gt是当前时间步的梯度;
  • E^[Δθt−12]是之前梯度的累积平方;
  • E^[gt2] 是当前梯度的平方的累积;
  • ϵ 是一个小常数,用于避免除零错误。
1.2 优点
  • 自适应学习率: Adadelta 不需要预定义学习率,通过梯度的变化动态调整学习率。
  • 避免学习率衰减: 与其他优化器不同,Adadelta 没有显式的学习率衰减机制,这使得优化过程更加稳定。
1.3 缺点
  • 参数更新较慢: 在一些任务中,Adadelta 的更新速度可能较慢,尤其是在复杂的深度神经网络中。
  • 内存消耗较大: Adadelta 存储了梯度的平方和参数的更新历史,因此需要更多的内存资源。
1.4 应用场景
  • 动态调整学习率: 适用于那些无法手动调整学习率的任务,特别是对于一些不容易设定初始学习率的情况。
  • 不需要手动调整学习率: 对于一些快速原型设计的任务,Adadelta 是一个不错的选择。

1.5 代码示例

import torch
import torch.optim as optim# 假设我们有一个模型和数据
model = torch.nn.Linear(10, 1)
optimizer = optim.Adadelta(model.parameters(), lr=1.0)# 假设损失函数
criterion = torch.nn.MSELoss()# 假设输入和目标
input = torch.randn(32, 10)
target = torch.randn(32, 1)# 训练过程
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()

2. Adam (Adaptive Moment Estimation)

2.1 公式

Adam 优化器的核心公式如下:

在这里插入图片描述

其中:

  • mt是梯度的一阶矩(均值);
  • vt 是梯度的二阶矩(方差);
  • m^t是对 mtvt 进行偏差修正后的估计;
  • gt是当前时间步的梯度;
  • β1β2 是一阶矩和二阶矩的衰减率;
  • ϵ 是一个小常数,用于避免除零错误;
  • α 是学习率。
2.2 优点
  • 动态调整学习率: Adam 通过一阶矩和二阶矩的自适应调整,使得每个参数的学习率是动态的。
  • 适应稀疏梯度: 对于一些稀疏梯度问题,Adam 展现出较好的性能。
  • 偏差修正: 通过修正一阶和二阶矩的偏差,Adam 在初期训练阶段表现更加稳定。
2.3 缺点
  • 过拟合: 在一些正则化要求较强的模型中,Adam 可能导致过拟合,特别是对于大型模型。
  • 内存消耗: Adam 需要存储一阶和二阶矩的估计,因此需要更多的内存资源。
2.4 应用场景
  • 大多数深度学习任务: Adam 适用于各种深度学习任务,尤其是在处理大规模数据集和深层神经网络时表现优异。
  • 稀疏数据和参数: 在处理稀疏梯度或稀疏参数的任务时,Adam 是非常合适的选择。

2.5 代码示例:

import torch
import torch.optim as optim# 假设我们有一个模型和数据
model = torch.nn.Linear(10, 1)
optimizer = optim.Adam(model.parameters(), lr=0.001)# 假设损失函数
criterion = torch.nn.MSELoss()# 假设输入和目标
input = torch.randn(32, 10)
target = torch.randn(32, 1)# 训练过程
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()

3. AdamW

3.1 公式

AdamW 的核心公式与 Adam 非常相似,不同之处在于它将权重衰减与梯度更新过程分开。AdamW 的参数更新公式如下:

在这里插入图片描述

其中:

  • λ 是权重衰减系数;
  • 其他符号与 Adam 中相同。
3.2 优点
  • 更好的正则化: 通过将权重衰减项从梯度更新中分离出来,AdamW 在正则化方面比 Adam 更加有效。
  • 更高的泛化能力: 由于权重衰减对模型权重的约束,AdamW 能有效减少过拟合,尤其适用于大规模模型。
3.3 缺点
  • 超参数调整: 相比于 AdamAdamW 需要额外调整权重衰减系数,可能增加调参的复杂度。
  • 计算成本: 虽然与 Adam 相似,但添加了权重衰减项,可能在计算和内存上稍有增加。
3.4 应用场景
  • 大型模型训练: AdamW 在需要正则化的大型模型(如 TransformerBERT)中有显著优势。
  • 需要强正则化的任务: 对于需要避免过拟合的任务,特别是在复杂模型中,AdamW 是更好的选择。

3.5 代码示例:

import torch
import torch.optim as optim# 假设我们有一个模型和数据
model = torch.nn.Linear(10, 1)
optimizer = optim.AdamW(model.parameters(), lr=0.001, weight_decay=0.01)# 假设损失函数
criterion = torch.nn.MSELoss()# 假设输入和目标
input = torch.randn(32, 10)
target = torch.randn(32, 1)# 训练过程
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()

4.总结

优化器核心思想公式优缺点适用场景
Adadelta基于 RMSprop 的改进版本,自适应调整学习率在这里插入图片描述优点:动态调整学习率,不需要手动设置;缺点:更新较慢,内存消耗大需要动态调整学习率的任务,快速原型设计
Adam结合动量和 RMSprop 的优点,通过一阶和二阶矩自适应调整在这里插入图片描述优点:动态调整学习率,适应稀疏梯度,偏差修正;缺点:可能导致过拟合,内存消耗大大多数深度学习任务,稀疏数据处理
AdamW在 Adam 基础上添加权重衰减,适合大模型正则化在这里插入图片描述优点:更好的正则化,减少过拟合;缺点:需要额外调整权重衰减系数大型模型训练,需要正则化的任务

相关文章:

深度学习模型组件之优化器--自适应学习率优化方法(Adadelta、Adam、AdamW)

深度学习模型组件之优化器–自适应学习率优化方法(Adadelta、Adam、AdamW) 文章目录 深度学习模型组件之优化器--自适应学习率优化方法(Adadelta、Adam、AdamW)1. Adadelta1.1 公式1.2 优点1.3 缺点1.4 应用场景 2. Adam (Adaptiv…...

使用jcodec库,访问网络视频提取封面图片上传至oss

注释部分为FFmpeg(确实方便但依赖太大,不想用) package com.zuodou.upload;import com.aliyun.oss.OSS; import com.aliyun.oss.model.ObjectMetadata; import com.aliyun.oss.model.PutObjectRequest; import com.zuodou.oss.OssProperties;…...

新品速递 | 多通道可编程衰减器+矩阵系统,如何破解复杂通信测试难题?

在无线通信技术快速迭代的今天,多通道可编程数字射频衰减器和衰减矩阵已成为测试领域不可或缺的核心工具。它们凭借高精度、灵活配置和强大的多通道协同能力,为5G、物联网、卫星通信等前沿技术的研发与验证提供了关键支持。从基站性能测试到终端设备校准…...

扩展------项目中集成阿里云短信服务

引言 在当今数字化时代,短信服务在各种项目中扮演着重要角色,如用户注册验证、订单通知、营销推广等。阿里云短信服务凭借其稳定、高效和丰富的功能,成为众多开发者和企业的首选。本文将详细介绍如何在项目中集成阿里云短信服务,帮…...

MySQL面试篇——性能优化

MySQL性能优化 在MySQL中,如何定位慢查询 慢查询表象:页面加载过慢、接口压测响应时间过长(超过1s)。造成慢查询的原因通常有:聚合查询、多表查询、表数据量过大查询、深度分页查询 方案一:开源工具 调试工…...

Java EE 进阶:Spring MVC(2)

cookie和session的关系 两者都是在客户端和服务器中进行存储数据和传递信息的工具 cookie和session的区别 Cookie是客⼾端保存⽤⼾信息的⼀种机制. Session是服务器端保存⽤⼾信息的⼀种机制. Cookie和Session之间主要是通过SessionId关联起来的,SessionId是Co…...

ShardingSphere 和 Spring 的动态数据源切换机制的对比以及原理

ShardingSphere 与 Spring 动态数据源切换机制的对比及原理 一、核心定位对比 维度ShardingSphereSpring动态数据源(如 AbstractRoutingDataSource)定位分布式数据库中间件轻量级多数据源路由工具核心目标分库分表、读写分离、分布式事务多数据源动态切…...

基于Django的协同过滤算法养老新闻推荐系统的设计与实现

基于Django的协同过滤算法养老新闻推荐系统(可改成普通新闻推荐系统使用) 开发工具和实现技术 Pycharm,Python,Django框架,mysql8,navicat数据库管理工具,vue,spider爬虫&#xff0…...

AI视频生成工具清单(附网址与免费说明)

以下是一份详细的AI视频制作网站总结清单,包含免费/付费信息及核心功能说明: AI视频生成工具清单(附网址与免费说明) 1. Synthesia 网址:https://www.synthesia.io是否免费:免费试用(生成视频…...

JavaWeb学习——HTTP协议

HTTP 协议 什么是 HTTP 协议 HTTP(超文本传输协议,HyperText Transfer Protocol)是用于在客户端(如浏览器)和服务器之间传输超文本(如网页、图片、视频等)的应用层协议。它是现代互联网数据通…...

QP 问题(Quadratic Programming, 二次规划)

QP 问题(Quadratic Programming, 二次规划)是什么? QP(Quadratic Programming,二次规划)是一类优化问题,其中目标函数是二次型函数,约束条件可以是线性等式或不等式。 QP 问题是线…...

VSTO(C#)Excel开发2:Excel对象模型和基本操作

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 源码指引:github源…...

MySQL索引数据结构

目录 1 索引常用的数据结构 1.1 二叉树 1.2 平衡二叉树 1.3 红黑树 1.3 Hash表 1.4 B树 1.4 B树 2 MySQL索引的数据结构 2.1 MyISAM存储引擎索引 2.2 InnoDB存储引擎索引 2.2.1 聚集索引 2.2.2 非聚集索引 2.2.3 联合索引数 2.2.4 hash索引 1 索引常用的数据结构 1.1 二叉树 二…...

C 语 言 --- 数 组 (1)

C 语 言 --- 数 组1 数 组定义一维数组语 法 格 式初始化完 全 初 始 化不 完 全 初 始 化省 略 数 组 大 小不 初 始 化使 用 memset 初 始 化 类 型访 问 元 素一 维 数 组 在 内 存 中 的 存 储 总结 💻作 者 简 介:曾 与 你 一 样 迷 茫,…...

[视频编码]rkmpp 实现硬件编码

mpi_enc_test的命令参数描述说明 命令参数的描述说明如下: 命令参数 描述说明 -i 输入的图像文件。 -o 输出的码流文件。 -w 图像宽度,单位为像素。 -h 图像高度,单位为像素。 -hstride 垂直方向相邻两行之间的距离,单…...

3D数字化:家居行业转型升级的关键驱动力

在科技日新月异的今天,家居行业正经历着一场前所未有的变革。从传统的线下实体店铺到线上电商平台的兴起,再到如今3D数字化营销的广泛应用,消费者的购物体验正在发生翻天覆地的变化。3D数字化营销不仅让购物变得更加智能和便捷,还…...

网安知识点

1.SQL注入漏洞产生的原因是? 前端传到后端的数据,没有经过任何处理,直接当作sql语句的一部分来执行 2.讲一下sql注入,写入webshell需要哪些前提条件 开启导入导出权限secure-file-priv 站点根目录位置/路径 mysql用户对站点根目…...

天津大学02-深度解读DeepSeek:部署、使用、安全【文末附下载链接】

大模型风险与不当用例——价值观错位 大模型与人类价值观、期望之间的不一致而导致的安全问题,包含:• 社会偏见(Social Bias)LLM在生成文本时强化对特定社会群体的刻板印象,例如将穆斯林与恐怖主义关联,或…...

【kubernetes】service

目录 1. 说明2. 原理2.1 服务注册2.2 服务发现2.3 负载均衡 3. Service的类型3.1 ClusterIP3.2 NodePort3.3 LoadBalancer3.4 ExternalName 4. 使用场景 1. 说明 1.kubernetes中的service主要用于提供网络服务,并实现微服务架构中的几个核心功能:全自动…...

Python卷积神经网络(CNN)来识别和计数不同类型的工业零件

以下三种类型工业零件为例,使用卷积神经网络(CNN)来识别和计数不同类型的工业零件。以下是Python实现步骤: 数据准备:收集并标注包含不同形状(如方形、圆形、扇形)的工业零件图像数据集。 模型…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理&#xff1a…...

【单片机期末】单片机系统设计

主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

Linux-进程间的通信

1、IPC&#xff1a; Inter Process Communication&#xff08;进程间通信&#xff09;&#xff1a; 由于每个进程在操作系统中有独立的地址空间&#xff0c;它们不能像线程那样直接访问彼此的内存&#xff0c;所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...

动态规划-1035.不相交的线-力扣(LeetCode)

一、题目解析 光看题目要求和例图&#xff0c;感觉这题好麻烦&#xff0c;直线不能相交啊&#xff0c;每个数字只属于一条连线啊等等&#xff0c;但我们结合题目所给的信息和例图的内容&#xff0c;这不就是最长公共子序列吗&#xff1f;&#xff0c;我们把最长公共子序列连线起…...