当前位置: 首页 > news >正文

蓝桥试题:蓝桥勇士(LIS)

一、题目描述

小明是蓝桥王国的勇士,他晋升为蓝桥骑士,于是他决定不断突破自我。

这天蓝桥首席骑士长给他安排了 N 个对手,他们的战力值分别为 a1,a2,...,an​,且按顺序阻挡在小明的前方。对于这些对手小明可以选择挑战,也可以选择避战。

作为热血豪放的勇士,小明从不走回头路,且只愿意挑战战力值越来越高的对手。

请你算算小明最多会挑战多少名对手。

输入描述

输入第一行包含一个整数 N,表示对手的个数。

第二行包含 N 个整数 a1,a2,...,an,分别表示对手的战力值。

1≤N≤1e3,1≤ai≤1e9。

输出描述

输出一行整数表示答案。

输入输出样例

输入

6
1 4 3 2 5 6

输出 

4

二、 LIS算法介绍

最长递增子序列(LIS)算法详解及Java实现


最长递增子序列(Longest Increasing Subsequence,LIS)问题要求在一个无序的序列中找到最长的子序列,使得该子序列中的元素严格递增。以下是两种常见解法及其Java实现。

方法一:动态规划(时间复杂度 O(n²))

算法思路定义 dp[i] 表示以第 i 个元素结尾的最长递增子序列长度。

初始化每个 dp[i] 为 1(每个元素本身构成一个长度为 1 的子序列)。

对于每个元素 nums[i],遍历其之前的所有元素 nums[j](j < i),若 nums[j] < nums[i],则更新 dp[i] = max(dp[i], dp[j] + 1)。

最终结果为 dp 数组中的最大值。

import java.util.Arrays;public class LIS {public int lengthOfLIS(int[] nums) {if (nums == null || nums.length == 0) return 0;int[] dp = new int[nums.length];Arrays.fill(dp, 1);int maxLen = 1;for (int i = 1; i < nums.length; i++) {for (int j = 0; j < i; j++) {if (nums[j] < nums[i]) {dp[i] = Math.max(dp[i], dp[j] + 1);}}maxLen = Math.max(maxLen, dp[i]);}return maxLen;}
}


方法二:贪心 + 二分查找(时间复杂度 O(n log n))

算法思路

维护一个数组 tail,其中 tail[i] 表示长度为 i+1 的最长递增子序列的最小末尾元素。

遍历原数组,对于每个元素 num:

若 num 大于 tail 的最后一个元素,直接添加到 tail。

否则,使用二分查找在 tail 中找到第一个大于等于 num 的位置,替换为该元素。

最终 tail 的长度即为最长递增子序列的长度。

 

import java.util.ArrayList;
import java.util.Collections;public class LIS {public int lengthOfLIS(int[] nums) {ArrayList<Integer> tail = new ArrayList<>();for (int num : nums) {if (tail.isEmpty() || num > tail.get(tail.size() - 1)) {tail.add(num);} else {int index = Collections.binarySearch(tail, num);index = (index < 0) ? -index - 1 : index;tail.set(index, num);}}return tail.size();}
}

三、代码演示

import java.util.Scanner;public class Main { public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();       // 读取输入的数组长度 nint[] a = new int[n];            // 创建数组 a 存储输入序列for (int i = 0; i < n; i++) {a[i] = scanner.nextInt();   // 逐个读取元素到数组 a}int[] dp = new int[n];           // 定义动态规划数组 dp,长度与输入数组一致int max = 1;                     // 初始化最长子序列长度为1(至少包含一个元素)for (int i = 0; i < n; i++) {    // 外层循环遍历每个元素dp[i] = 1;                   // 关键修正:初始化 dp[i] 为1(每个元素自身构成长度为1的子序列)for (int j = 0; j < i; j++) { // 内层循环遍历 i 之前的所有元素 jif (a[i] > a[j]) {       // 若当前元素 a[i] > a[j],满足递增条件dp[i] = Math.max(dp[i], dp[j] + 1); // 更新 dp[i] 为更大的值(继承 j 的状态+1)}}max = Math.max(max, dp[i]);   // 更新全局最大值}System.out.println(max);         // 输出最长递增子序列的长度}
}

示例验证

8
10 9 2 5 3 7 101 18


执行过程
初始化


dp 数组初始化为全1:[1, 1, 1, 1, 1, 1, 1, 1]。

外层循环 i=0(元素10)

内层循环无 j < 0,直接跳过。

max 保持为1。

外层循环 i=1(元素9)

检查 j=0:9 < 10,不更新 dp[1]。

dp 保持为 [1, 1, ...],max 仍为1。

外层循环 i=2(元素2)

检查 j=0:2 < 10 → 不更新。

检查 j=1:2 < 9 → 不更新。

dp 保持为 [1, 1, 1, ...],max 仍为1。

外层循环 i=3(元素5)

检查 j=0:5 < 10 → 不更新。

检查 j=1:5 < 9 → 不更新。

检查 j=2:5 > 2 → dp[3] = max(1, 1+1) = 2。

dp 变为 [1, 1, 1, 2, ...],max 更新为2。

外层循环 i=4(元素3)

检查 j=2:3 > 2 → dp[4] = max(1, 1+1) = 2。

dp 变为 [1, 1, 1, 2, 2, ...],max 仍为2。

外层循环 i=5(元素7)

检查 j=2:7 > 2 → dp[5] = 1+1 = 2。

检查 j=3:7 > 5 → dp[5] = max(2, 2+1) = 3。

检查 j=4:7 > 3 → dp[5] = max(3, 2+1) = 3。

dp 变为 [1, 1, 1, 2, 2, 3, ...],max 更新为3。

外层循环 i=6(元素101)

遍历所有 j < 6,找到最长子序列 [2,5,7],长度3 → dp[6] = 3+1 = 4。

max 更新为4。

外层循环 i=7(元素18)

找到最长子序列 [2,5,7,18],但 dp[7] = 4(与 dp[6] 相同)。

max 保持为4。

相关文章:

蓝桥试题:蓝桥勇士(LIS)

一、题目描述 小明是蓝桥王国的勇士&#xff0c;他晋升为蓝桥骑士&#xff0c;于是他决定不断突破自我。 这天蓝桥首席骑士长给他安排了 N 个对手&#xff0c;他们的战力值分别为 a1,a2,...,an​&#xff0c;且按顺序阻挡在小明的前方。对于这些对手小明可以选择挑战&#xf…...

Trae IDE新建C#工程

目录 1 结论 2 项目结构 3 项目代码 1 结论 新建C#工程来说&#xff0c;Trae的Chat比DeepSeek的Coder好用。 2 项目结构 MyWinFormsApp/ │ ├── Program.cs ├── Form1.cs ├── Form1.Designer.cs ├── MyResources/ │ └── MyResources.resx └── MyWin…...

Linux基础--进程管理

目录 静态查看进程 使用命令: ps 动态查看进程 使用命令: top 关闭进程: 使用命令: kill 查看进程占用端口 使用命令: ss ​编辑 查看某端口是否被进程占用 使用命令: lsof 作业管理 进程后台运行: 使用命令: jobs 将后台进程调回前台 使用指令: fg 将前台进…...

Java面向对象(详细解释)

第一章 Static关键字 1.static的介绍以及基本使用 1.概述&#xff1a;static是一个静态关键字 2.使用&#xff1a; a.修饰一个成员变量&#xff1a; static 数据类型 变量名 b.修饰一个方法&#xff1a; 修饰符 static 返回值类型 方法名&#xff08;形参&#xff09;{…...

qt ui相关的第三方库插件库

Qt UI相关的第三方库和插件库有很多&#xff0c;能帮助开发者提高开发效率&#xff0c;扩展UI功能&#xff0c;增强可用性和美观度。以下是一些常见的第三方库和插件&#xff1a; 1. QCustomPlot 功能&#xff1a;用于在Qt应用程序中创建交互式的二维绘图。特点&#xff1a;支…...

详解动态规划算法

动态规划 一、动态规划的核心思想二、动态规划的步骤1. 定义状态&#xff08;State&#xff09;2. 确定状态转移方程&#xff08;State Transition Equation&#xff09;3. 确定边界条件&#xff08;Base Case&#xff09;4. 填表&#xff08;Table Filling&#xff09;或递归计…...

LINUX网络基础 [五] - HTTP协议

目录 HTTP协议 预备知识 认识 URL 认识 urlencode 和 urldecode HTTP协议格式 HTTP请求协议格式 HTTP响应协议格式 HTTP的方法 HTTP的状态码 ​编辑HTTP常见Header HTTP实现代码 HttpServer.hpp HttpServer.cpp Socket.hpp log.hpp Makefile Web根目录 H…...

慕慕手记项目日志 项目从开发到部署多环境配置 2025-3-8

慕慕手记项目日志 项目从开发到部署多环境配置 2025-3-8 现在是已经到了课程的第十章了&#xff0c;开始进行配置项目环境了。现在要完成的任务是项目可以正常运行&#xff0c;而且可以自由切换配置&#xff0c;开发/测试。 下面是当前的目录结构图&#xff1a; 现在来解释一…...

华为配置篇-OSPF基础实验

OSPF 一、简述二、常用命令总结三、实验3.1 OSPF单区域3.2 OSPF多区域3.3 OSPF 的邻接关系和 LSA 置底 一、简述 OSPF&#xff08;开放式最短路径优先协议&#xff09; 基本定义 全称&#xff1a;Open Shortest Path First 类型&#xff1a;链路状态路由协议&#xff08;IGP&…...

闭包:JavaScript 中的隐形大杀器

你可能已经在很多地方听说过闭包这个词&#xff0c;尤其是涉及到 JavaScript 的作用域和异步操作时。闭包是 JavaScript 中非常核心的概念&#xff0c;然而它又非常容易让开发者感到困惑。今天我们就来深入剖析闭包&#xff0c;帮助你真正理解它的工作原理&#xff0c;以及如何…...

【消息队列】数据库的数据管理

1. 数据库的选择 对于当前实现消息队列这样的一个中间件来说&#xff0c;具体要使用哪个数据库&#xff0c;是需要稍作考虑的&#xff0c;如果直接使用 MySQL 数据库也是能实现正常的功能&#xff0c;但是 MySQL 也是一个客户端服务器程序&#xff0c;也就意味着如果想在其他服…...

玩转ChatGPT:GPT 深入研究功能

一、写在前面 民间总结&#xff1a; 理科看Claude 3.7 Sonnet 文科看DeepSeek-R1 那么&#xff0c;ChatGPT呢&#xff1f; 看Deep Research&#xff08;深入研究&#xff09;功能。 对于科研狗来说&#xff0c;在这个文章爆炸的时代&#xff0c;如何利用AI准确、高效地收…...

Centos8部署mongodb报错记录

使用mongo ops安装mongodb6.0.4副本集报错 error while loading shared libraries: libnetsnmpmibs.so.35: cannot open shared object file: No such file or directory 解决 yum install net-snmp net-snmp-devel -y建议&#xff1a;初始化系统时把官网上的依赖包都装一遍 即…...

2024四川大学计算机考研复试上机真题

2024四川大学计算机考研复试上机真题 2024四川大学计算机考研复试机试真题 历年四川大学计算机考研复试机试真题 在线评测&#xff1a;https://app2098.acapp.acwing.com.cn/ 分数求和 题目描述 有一分数序列&#xff1a; 2/1 3/2 5/3 8/5 13/8 21/13… 求出这个数列的前 …...

前端面试题 口语化复述解答(从2025.3.8 开始频繁更新中)

背景 看了很多面试题及其答案。但是过于标准化&#xff0c;一般不能直接用于回复面试官&#xff0c;这里我将总结一系列面试题&#xff0c;用于自我复习也乐于分享给大家&#xff0c;欢迎大家提供建议&#xff0c;我必不断完善之。 Javascript ES6 1. var let const 的区别…...

更多文章请查看

更多文章知识请移步至下面链接&#xff0c;期待你的关注 如需查看新文章&#xff0c;请前往&#xff1a; 博主知识库https://www.yuque.com/xinzaigeek...

vulnhub靶场之【digitalworld.local系列】的vengeance靶机

前言 靶机&#xff1a;digitalworld.local-vengeance&#xff0c;IP地址为192.168.10.10 攻击&#xff1a;kali&#xff0c;IP地址为192.168.10.6 kali采用VMware虚拟机&#xff0c;靶机选择使用VMware打开文件&#xff0c;都选择桥接网络 这里官方给的有两种方式&#xff…...

MySql的安装及数据库的基本操作命令

1.MySQL的安装 1.1进入MySQL官方网站 1.2点击下载 1.3下拉选择MySQL社区版 1.4选择你需要下载的版本及其安装的系统和下载方式 直接安装以及压缩包 建议选择8.4.4LST LST表明此版本为长期支持版 新手建议选择红框勾选的安装方式 1.5 安装包下载完毕之后点击安装 2.数据库…...

中性点直接接地电网接地故障Simulink仿真

1.模型简介 本仿真模型基于MATLAB/Simulink&#xff08;版本MATLAB 2017Ra&#xff09;软件。建议采用matlab2017 Ra及以上版本打开。&#xff08;若需要其他版本可联系代为转换&#xff09; 2.系统仿真图&#xff1a; 3.中性点直接接地电网接地故障基本概念&#xff08;本仿…...

Linux16-数据库、HTML

数据库&#xff1a; 数据存储&#xff1a; 变量、数组、链表-------------》内存 &#xff1a;程序运行结束、掉电数据丢失 文件 &#xff1a; 外存&#xff1a;程序运行结束、掉电数据不丢失 数据库&#xff1a; …...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...