算法每日一练 (9)
💢欢迎来到张胤尘的技术站
💥技术如江河,汇聚众志成。代码似星辰,照亮行征程。开源精神长,传承永不忘。携手共前行,未来更辉煌💥
文章目录
- 算法每日一练 (9)
- 最小路径和
- 题目描述
- 解题思路
- 解题代码
- `c/c++`
- `golang`
- `lua`
官方站点: 力扣 Leetcode
算法每日一练 (9)
最小路径和
题目地址:最小路径和
题目描述
给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明: 每次只能向下或者向右移动一步。
示例 1:

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12
提示:
m == grid.lengthn == grid[i].length1 <= m, n <= 2000 <= grid[i][j] <= 200
解题思路
-
首先根据题目要求判断边界条件,当
m == n == 1时,不需要任何处理,直接返回即可。 -
由题意可知,在矩阵中任何一个节点只有一种方式可到达:从左边或上边,那么假设
i是矩阵的横坐标,j是矩阵的纵坐标,则有如下规则:- 当
i == 0并且j == 0时,就是(0,0)点,到达当前位置的路径最小和满足如下公式:
t m p [ i ] [ j ] = g r i d [ i ] [ j ] tmp[i][j] = grid[i][j] tmp[i][j]=grid[i][j] - 当
i == 0时,只能从左边到达,到达当前位置的路径最小和满足如下公式:
t m p [ i ] [ j ] = g r i d [ i ] [ j ] + t m p [ i ] [ j − 1 ] tmp[i][j] = grid[i][j] + tmp[i][j-1] tmp[i][j]=grid[i][j]+tmp[i][j−1] - 当
j == 0时, 只能从上面到达,到达当前位置的路径最小和满足如下公式:
t m p [ i ] [ j ] = g r i d [ i ] [ j ] + t m p [ i − 1 ] [ j ] tmp[i][j] = grid[i][j] + tmp[i-1][j] tmp[i][j]=grid[i][j]+tmp[i−1][j] - 当
i != 0并且j != 0时,到达当前位置的路径最小和满足如下公式:
t m p [ i ] [ j ] = g r i d [ i ] [ j ] + m i n ( t m p [ i − 1 ] [ j ] , t m p [ i ] [ j − 1 ] ) tmp[i][j] = grid[i][j] + min(tmp[i-1][j], tmp[i][j-1]) tmp[i][j]=grid[i][j]+min(tmp[i−1][j],tmp[i][j−1])
- 当
-
创建临时矩阵
tmp,根据以上的公式依次给矩阵中的每个元素赋值。 -
返回
tmp[m-1][n-1]的值,因为tmp[m-1][n-1]存储的是就是到达右下角的最小路径和。
golang的解法采用了上述的解题思路;c/c++和lua的解法采用了一维数组作为临时容器,感兴趣的同学可以作为参考。
解题代码
c/c++
class Solution {
public:int minPathSum(vector<vector<int>>& grid) {int m = grid.size();int n = grid[0].size();if (m == 1 && n == 1)return grid[0][0];std::vector<int> tmp;tmp.resize(n);for (int j = 0; j < n; j++) {if (j == 0)tmp[j] = grid[0][j];elsetmp[j] = grid[0][j] + tmp[j - 1];}for (int i = 1; i < m; i++) {for (int j = 0; j < n; j++) {if (j == 0)tmp[j] += grid[i][j];elsetmp[j] = grid[i][j] + std::min(tmp[j - 1], tmp[j]);}}return tmp[n - 1];}
};
golang
func minPathSum(grid [][]int) int {m := len(grid)n := len(grid[0])if m == 1 && n == 1 {return grid[0][0]}tmp := make([][]int, m)for i := 0; i < m; i++ {tmp[i] = make([]int, n)for j := 0; j < n; j++ {if i == 0 && j == 0 {tmp[i][j] = grid[i][j]} else if i == 0 {tmp[i][j] = grid[i][j] + tmp[i][j-1]} else if j == 0 {tmp[i][j] = grid[i][j] + tmp[i-1][j]} else {tmp[i][j] = grid[i][j] + min(tmp[i-1][j], tmp[i][j-1])}}}return tmp[m-1][n-1]
}
lua
local function minPathSum(grid)local m, n = #grid, #grid[1]if m == 1 and n == 1 thenreturn grid[1][1]endlocal tmp = {}for j = 1, n doif j == 1 thentmp[j] = grid[1][j]elsetmp[j] = grid[1][j] + tmp[j - 1]endendfor i = 2, m dofor j = 1, n doif j == 1 thentmp[j] = tmp[j] + grid[i][j]elsetmp[j] = grid[i][j] + math.min(tmp[j], tmp[j - 1])endendendreturn tmp[n]
end
🌺🌺🌺撒花!
如果本文对你有帮助,就点关注或者留个👍
如果您有任何技术问题或者需要更多其他的内容,请随时向我提问。

相关文章:
算法每日一练 (9)
💢欢迎来到张胤尘的技术站 💥技术如江河,汇聚众志成。代码似星辰,照亮行征程。开源精神长,传承永不忘。携手共前行,未来更辉煌💥 文章目录 算法每日一练 (9)最小路径和题目描述解题思路解题代码…...
软考高级信息系统项目管理师笔记-第10章项目进度管理
第10章项目进度管理 10.1 管理基础 10.1.1 项目进度计划的定义和总要求 1、项目进度计划是 一种用于沟通和管理干系人期望的工具,为绩效报告提供依据。 2、项目管理团队编制进度计划的一般步骤为: 首先选择进度计划方法,例如关键路径法; 然后将项目特定数据,如活动、计…...
专门为高速连续扫描设计的TDI工业相机
TDI(Time Delay Integration,时间延迟积分)工业相机是一种基于特殊CCD(电荷耦合器件)技术的成像设备,主要用于高速、高灵敏度、高分辨率的图像采集场景。其核心原理是通过多级积分和同步电荷转移技术&#…...
【Vue3】实现一个超过高度后可控制显示隐藏的组件
组件效果图 未达到最大高度 达到设置的最大高度 进行展开 实现代码 组件代码 备注:通过tailwindcss设置的样式,通过element-plus/icons-vue设置的图标,可根据情况进行替换 <template><!-- 限制高度组件 --><div ref"…...
Spring提供的SPEL表达式
SPEL 1. 概述 SpEL是Spring框架中用于表达式语言的一种方式。它类似于其他编程语言中的表达式语言,用于在运行时计算值或执行特定任务。 SpEL提供了一种简单且强大的方式来访问和操作对象的属性、调用对象的方法,以及实现运算、条件判断等操作。它可以…...
JAVA编程【jvm垃圾回收的差异】
jvm垃圾回收的差异 JVM(Java Virtual Machine)的垃圾回收(GC)机制是自动管理内存的一种方式,能够帮助开发者释放不再使用的内存,避免内存泄漏和溢出等问题。不同的垃圾回收器(GC)有…...
Elasticsearch:“Your trial license is expired”
目录标题 问题原因解决方案 问题 原因 ES的X-pack许可证是提供免费一个月的试用,到期之后就会报这个错误。 解决方案 查看license GET _license 开启试用license POST _xpack/license/start_trial?acknowledgetrue修改为基础license POST _xpack/license/start_…...
fmql之Linux WDT
正点原子第52章。 基础知识 正点原子教程 fmql-dts 代码 APP代码(不需要编写驱动代码) static int dw_wdt_drv_probe(struct platform_device *pdev) {struct device *dev &pdev->dev;struct watchdog_device *wdd;struct dw_wdt *dw_wdt; …...
【算法学习之路】7.链表算法
链表算法 前言一.原地逆置思路一:头插法思路二:双指针法思路3:递归 例题:1.头插法2.双指针法3,递归 二.双指针快慢指针:一个指针快一个指针慢例题1例题2 前言 我会将一些常用的算法以及对应的题单给写完&am…...
IDEA Commit 模态提交界面关闭VS开启对比
IDEA Commit 模态提交界面关闭VS开启对比 前言开启模态提交界面优点快捷且灵活的选择需要commit文件显示文件修改内容多(主观) 缺点在模态提交界面选择文件,临时关闭模态框重新打开会重置选择的commit文件 关闭模态提交界面优点允许在commit选择文件时查看其它没有修…...
【AI赋能】AI 工具生成视频教材:从创意到成品的全流程指南
AI 工具生成视频教材:从创意到成品的全流程指南 目标 通过本教材,您将学会如何利用 AI 工具(Grok、Sora、Speechify 和 CapCut)生成一个完整的视频,包括脚本生成、视频片段制作、字幕添加、音频生成以及最终剪辑合成…...
qt 操作多个sqlite文件
qt 操作多个sqlite文件 Chapter1 qt 操作多个sqlite文件1. 引入必要的头文件2. 创建并连接多个SQLite数据库3. 代码说明4. 注意事项 Chapter2 qt 多线程操作sqlite多文件1. 引入必要的头文件2. 创建数据库操作的工作线程类3. 在主线程中创建并启动多个工作线程4. 代码说明5. 运…...
WSL with NVIDIA Container Toolkit
一、wsl 下安装 docker 会提示安装 docekr 桌面版,所以直接安装 docker 桌面版本即可 二、安装 NVIDIA Container Toolkit NVIDIA Container Toolkit仓库 https://github.com/NVIDIA/nvidia-container-toolkitgithub.com/NVIDIA/nvidia-container-toolkit 安装…...
Vue 系列之:组件通讯
子组件调用父组件方法 1、直接在子组件中通过 this.$parent.event 来调用父组件的方法 父组件: <template><p><child></child></p> </template> <script>import child from ./child;export default {components: {chi…...
【Linux实践系列】:用c语言实现一个shell外壳程序
🔥本文专栏:Linux Linux实践项目 🌸博主主页:努力努力再努力wz 那么今天我们就要进入Linux的实践环节,那么我们之前学习了进程控制相关的几个知识点,比如进程的终止以及进程的等待和进程的替换,…...
STL map 的 lower_bound(x)、upper_bound(x) 等常用函数
【STL map 简介】 ● STL map 是一种关联容器,存储键值对,每个键(key value)是唯一的,而值(mapped value)可以重复。构建 STL map 时,无论元素插入顺序如何,STL map 中的…...
【A2DP】SBC 编解码器互操作性要求详解
目录 一、SBC编解码器互操作性概述 二、编解码器特定信息元素(Codec Specific Information Elements) 2.1 采样频率(Sampling Frequency) 2.2 声道模式(Channel Mode) 2.3 块长度(Block Length) 2.4 子带数量(Subbands) 2.5 分配方法(Allocation Method) 2…...
Computational Linguistics期刊全解析:领域顶刊的投稿指南与学术价值
在人工智能与语言学交叉融合的浪潮中,《Computational Linguistics》(CL)作为该领域的标杆期刊,始终是研究者发表前沿成果的首选平台。本文将从期刊影响力、投稿策略、收稿方向等角度,为学者提供一份全面的指南。 一、…...
【量化科普】Sharpe Ratio,夏普比率
【量化科普】Sharpe Ratio,夏普比率 🚀量化软件开通 🚀量化实战教程 在量化投资领域,夏普比率(Sharpe Ratio)是一个非常重要的风险调整后收益指标。它由诺贝尔经济学奖得主威廉F夏普(William…...
运行OpenManus项目(使用Conda)
部署本项目需要具备一定的基础:Linux基础、需要安装好Anaconda/Miniforge(Python可以不装好,直接新建虚拟环境的时候装好即可),如果不装Anaconda或者Miniforge,只装过Python,需要确保Python是3.…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...
