当前位置: 首页 > news >正文

C++第十节:map和set的介绍与使用

 

【本节要点】

  • 1.关联式容器
  • 2.键值对
  • 3.map介绍与使用
  • 4.set介绍与使用
  • 5.multimap与multisedd的介绍与使用

一、关联式容器:数据管理的核心利器

关联式容器是STL中用于高效存储和检索键值对(key-value pair)的数据结构,其底层基于红黑树(Red-Black Tree)实现,具备以下特性:

  • 有序性:元素按**键(key)**自动排序(默认升序)。
  • 对数时间复杂度:插入、删除、查找操作均为 O(logN)
  • 键的唯一性(仅Map和Set):每个键唯一存在,Multimap和Multiset允许重复键。

应用场景

  • 数据库索引(如MySQL的B+树索引)
  • 配置参数映射(如INI文件解析)
  • 单词频次统计
  • 唯一元素集合管理

二、键值对(Key-Value Pair)

概念键值对是关联式容器的核心单元,通过键(Key)快速定位值(Value),适用于“一对一”或“一对多”映射场景。

SGI-STL中关于键值对的定义:

template <class T1, class T2>
struct pair
{typedef T1 first_type;typedef T2 second_type;T1 first;T2 second;pair(): first(T1()), second(T2()){}pair(const T1& a, const T2& b): first(a), second(b){}
};

三、Map:高效键值映射

3.1 核心特性

  • 唯一键:每个键只能对应一个值。
  • 自动排序:元素按键升序存储(可自定义比较函数)。

 3.2 map的构造

3.3  map的迭代器

3.4  map的容量与元素访问

 3.5. map中元素的修改

3.6 map小结

  • 1. map中的的元素是键值对
  • 2. map中的key是唯一的,并且不能修改
  • 3. 默认按照小于的方式对key进行比较
  • 4. map中的元素如果用迭代器去遍历,可以得到一个有序的序列
  • 5. map的底层为平衡搜索树(红黑树),查找效率比较高$O(log_2 N)$
  • 6. 支持[]操作符,operator[]中实际进行插入查找。

四、Set:唯一元素集合

4.1 核心特性

  • 元素即键:存储不重复的元素,仅支持按值查找。
  • 自动去重:插入重复元素无效。

4.2 set的构造

 4.3 set的迭代器

4.4 set的容量

4.5 set修改操作

4.6 应用场景

  • 用户ID去重
  • 集合运算(如set_intersection、set_union)

五、Multimap与Multiset:支持重复键的扩展容器

容器

键是否唯一

值是否唯一

适用场景

Multimap

邮件地址分组、学生课程映射

Multiset

单词频次统计、学生成绩排名

容器

插入/删除

查找

键是否唯一

是否允许修改键

适用场景

Map

O(logN)

O(logN)

需要键值映射的场景

Set

O(logN)

O(logN)

唯一元素集合管理

Multimap

O(logN)

O(logN)

一对多映射(如用户-角色)

Multiset

O(logN)

O(logN)

允许重复的统计场景

选型建议

  • 若需键值映射键唯一,优先选择Map。
  • 若仅需存储唯一元素,使用Set。
  • 若存在一对多关系,选用Multimap(如用户-邮件地址)。

六、总结

Map和Set作为基于红黑树的关联式容器,提供了平衡的时间复杂度和有序性保障,适用于需要高效查找和唯一性管理的场景。开发者需根据实际需求权衡有序性、唯一性及性能因素,灵活选择容器类型(Map vs unordered_map、Set vs Multiset),并合理使用API以避免潜在陷阱(如下标操作副作用)。深入理解其底层原理,有助于在复杂系统中设计高效的数据结构。


以上就是关于树型结 构的关联式容器主总结,如果有发现问题的小伙伴,请在评论区说出来哦。后面还会持续更新C++相关知识,感兴趣请持续关注我哦!! 

 

相关文章:

C++第十节:map和set的介绍与使用

【本节要点】 1.关联式容器2.键值对3.map介绍与使用4.set介绍与使用5.multimap与multisedd的介绍与使用 一、关联式容器&#xff1a;数据管理的核心利器 关联式容器是STL中用于高效存储和检索键值对&#xff08;key-value pair&#xff09;的数据结构&#xff0c;其底层基于红黑…...

线性代数笔记28--奇异值分解(SVD)

1. 奇异值分解 假设矩阵 A A A有 m m m行 n n n列 奇异值分解就是在 A A A的行向量上选取若干对标准正交基&#xff0c;对它作 A A A矩阵变化并投射到了 A A A的列空间上的正交基的若干倍数。 A v → u → σ u → ∈ R m v → ∈ R n A\overrightarrow{v}\overrightarrow{u…...

【从零开始学习计算机科学】硬件设计与FPGA原理

硬件设计 硬件设计流程 在设计硬件电路之前,首先要把大的框架和架构要搞清楚,这要求我们搞清楚要实现什么功能,然后找找有否能实现同样或相似功能的参考电路板(要懂得尽量利用他人的成果,越是有经验的工程师越会懂得借鉴他人的成果)。如果你找到了的参考设计,最好还是…...

项目中同时使用Redis(lettuce)和Redisson的报错

温馨提示&#xff1a;图片有点小&#xff0c;可以放大页面进行查看... 问题1&#xff1a;版本冲突 直接上图&#xff0c;这个错表示依赖版本不匹配问题&#xff0c;我本地SpringBoot用的是2.7&#xff0c;但是Redisson版本用的3.32.5。 我们通过点击 artifactId跟进去 发现它…...

leetcode-数组

26. 删除有序数组中的重复项 已解答 简单 相关标签 相关企业 提示 给你一个 非严格递增排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 n…...

人工智能里的深度学习指的是什么?

深度学习&#xff08;Deep Learning, 简称DL&#xff09;是机器学习领域的一个重要分支&#xff0c;它通过构建和训练深层神经网络模型&#xff0c;从大量数据中自动学习和提取特征&#xff0c;以实现复杂任务的自动化处理和决策。以下是关于深度学习的详细介绍&#xff1a; 一…...

docker本地部署ollama

启动ollama容器 1.使用该命令启动CPU版运行本地AI模型 docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama 2.此命令用于启动GPU版本运行AI模型 前提是笔记本已配置NVIDIA的GPU驱动&#xff0c;可在shell中输入nvidia-smi查看详细情况…...

LangChain构建语言模型驱动应用的强大框架

LangChain 核心功能与组件链&#xff08;Chains&#xff09;记忆&#xff08;Memory&#xff09;提示模板&#xff08;Prompts&#xff09;代理&#xff08;Agents&#xff09;数据检索&#xff08;Indexes&#xff09; 应用场景文档问答自动化工作流知识管理系统 发展历程总结…...

2025-03-08 学习记录--C/C++-PTA 习题10-2 递归求阶乘和

合抱之木&#xff0c;生于毫末&#xff1b;九层之台&#xff0c;起于累土&#xff1b;千里之行&#xff0c;始于足下。&#x1f4aa;&#x1f3fb; 一、题目描述 ⭐️ 二、代码&#xff08;C语言&#xff09;⭐️ #include <stdio.h>double fact( int n ); double facts…...

浅谈 DeepSeek 对 DBA 的影响

引言&#xff1a; 在人工智能技术飞速发展的背景下&#xff0c;DeepSeek 作为一款基于混合专家模型&#xff08;MoE&#xff09;和强化学习技术的大语言模型&#xff0c;正在重塑传统数据库管理&#xff08;DBA&#xff09;的工作模式。通过结合其强大的自然语言处理能力、推理…...

AI如何重塑运维体系

AI大模型的引入正在从被动响应到主动预防、从经验驱动到数据智能全面重构运维体系。 一、颠覆传统运维模式的技术革新 故障预测&#xff1a;从“救火”到“防火” AI大模型通过整合历史日志、硬件状态、网络流量等多模态数据&#xff0c;结合时间序列分析&#xff08;如LSTM&am…...

linux 内网下载 yum 依赖问题

1.上传系统镜像 创建系统目录&#xff0c;用户存放镜像&#xff0c;如下&#xff1a; mkdir /mnt/iso上传 iso 文件到 /mnt/iso 文件夹下。 2.挂载系统镜像 安装镜像至 /mnt/cdrom 目录中 mount -o loop /mnt/iso/CentOS-7-x86_64-Minimal-xx.iso /mnt/cdrom3.修改yum源配…...

mapbox开发小技巧

自定义图标 // 1、单个图标 const url ./static/assets/symbols/code24x24/VIDEO.png // 图标路径 map.loadImage(url ,(error, image) > {if (error) throw errormap.addImage(video-icon, image) })// 2、雪碧图利用canvas // json和png图片 function getStyleImage(fil…...

DeepSeek×博云AIOS:突破算力桎梏,开启AI普惠新纪元

背景 在全球人工智能技术高速迭代的背景下&#xff0c;算力成本高企、异构资源适配复杂、模型部署效率低下等问题&#xff0c;始终是制约企业AI规模化应用的关键。 DeepSeek以创新技术直击产业痛点&#xff0c;而博云先进算力管理平台AIOS的全面适配&#xff0c;则为这一技术…...

Java高频面试之集合-07

hello啊&#xff0c;各位观众姥爷们&#xff01;&#xff01;&#xff01;本baby今天来报道了&#xff01;哈哈哈哈哈嗝&#x1f436; 面试官&#xff1a;ArrayList 和 Vector 的区别是什么&#xff1f; ArrayList 与 Vector 的区别详解 ArrayList 和 Vector 都是 Java 中基于…...

Redis- 切片集群

切片集群 切片集群什么是Redis Cluster吗&#xff1f;为什么需要切片集群&#xff1f;Redis Cluster的数据分片机制是怎样的&#xff1f;哈希槽的算法是什么基本算法流程 待填坑 切片集群 什么是Redis Cluster吗&#xff1f;为什么需要切片集群&#xff1f; Redis Cluster是R…...

【项目日记(十)】瓶颈分析与使用基数树优化

前言 上一期我们对整个项目进行了细节部分的优化&#xff0c;并在最后测试了多线程环境下和malloc的性能对比测试&#xff0c;发现malloc有时候还是更胜一筹的&#xff0c;基于此我们进行对我们的内存池进行瓶颈分析与优化。 目录 前言 一、项目瓶颈分析 VS编译器下性能分…...

后台管理系统比较全面的分析对比

以下是主流的 后台管理系统模板 分类与技术选型指南&#xff0c;涵盖开源、商业及全栈解决方案&#xff0c;可根据项目需求灵活选择&#xff1a; 一、开源免费模板 1. React 技术栈 Ant Design Pro 官网&#xff1a;pro.ant.design特点&#xff1a;阿里出品&#xff0c;内置 R…...

HCIA复习拓扑实验

一.拓扑图 二.需求 1.学校内部的HTTP客户端可以正常通过域名www.baidu.com访问到百度网络中HTTP服务器 2.学校网络内部网段基于192.168.1.0/24划分&#xff0c;PC1可以正常访问3.3.3.0/24网段&#xff0c;但是PC2不允许 3.学校内部路由使用静态路由&#xff0c;R1和R2之间两…...

TI毫米波雷达开发 —— 串口输出数据解析

TI毫米波雷达开发 —— 串口输出解析 TLV协议协议概述HeaderBodyPadding TI 毫米波雷达芯片计算的结果数据都会从UART发出供上位机进行解析并展示。解析和展示是两个不同的概念&#xff0c;解析指提取有效数据并转换成常见的度量值。展示指数据的可视化。 由于雷达这个领域的特…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

使用SSE解决获取状态不一致问题

使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件&#xff0c;这个上传文件是整体功能的一部分&#xff0c;文件在上传的过程中…...

如何在Windows本机安装Python并确保与Python.NET兼容

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...