动态规划详解(二):从暴力递归到动态规划的完整优化之路
目录
一、什么是动态规划?—— 从人类直觉到算法思维
二、暴力递归:最直观的问题分解方式
1. 示例:斐波那契数列
2. 递归树分析(以n=5为例)
3. 问题暴露
三、第一次优化:记忆化搜索(Memoization)
1. 核心思想
2. 斐波那契优化实现
3. 复杂度分析
四、第二次进化:自底向上动态规划
1. 思维转变
2. 斐波那契DP实现
3. 空间优化(滚动数组)
五、经典案例:爬楼梯问题(LeetCode 70)
1. 问题描述
2. 暴力递归解法
3. DP优化实现
4. 状态转移方程推导
六、高阶案例:0-1背包问题
1. 问题描述
2. 暴力递归解法
3. 记忆化搜索优化
4. 动态规划终极形态
5. 空间压缩技巧(滚动数组)
七、动态规划解题方法论总结
1. 五步法流程
2. 优化路线图
3. 常见问题处理技巧
八、实战练习建议
一、什么是动态规划?—— 从人类直觉到算法思维
动态规划(Dynamic Programming, DP) 本质是一种通过"聪明的穷举"解决问题的思想。它的核心是发现重叠子问题和最优子结构,并通过存储中间结果避免重复计算。我们可以通过一个认知升级路线来理解它:
暴力递归 → 发现重复计算 → 记忆化搜索 → 推导状态转移 → 自底向上动态规划
二、暴力递归:最直观的问题分解方式
1. 示例:斐波那契数列
// 经典递归实现
public int fib(int n) {if (n <= 1) return n;return fib(n-1) + fib(n-2);
}
2. 递归树分析(以n=5为例)
fib(5)/ \fib(4) fib(3)/ \ / \
fib(3) fib(2) fib(2) fib(1)
...(继续展开)...
3. 问题暴露
重复计算:fib(3)计算2次,fib(2)计算3次
指数级复杂度:O(2^n) 时间复杂度,O(n) 栈空间
三、第一次优化:记忆化搜索(Memoization)
1. 核心思想
-
空间换时间:使用数组/HashMap存储已计算结果
-
剪枝优化:计算前先查询存储结构
2. 斐波那契优化实现
public int fibMemo(int n) {int[] memo = new int[n+1];Arrays.fill(memo, -1);return dfs(n, memo);
}private int dfs(int n, int[] memo) {if (n <= 1) return n;if (memo[n] != -1) return memo[n];memo[n] = dfs(n-1, memo) + dfs(n-2, memo);return memo[n];
}
3. 复杂度分析
时间复杂度:O(n) —— 每个子问题只计算一次
空间复杂度:O(n) 递归栈 + O(n) 存储空间
四、第二次进化:自底向上动态规划
1. 思维转变
递归(自顶向下) → 迭代(自底向上)
2. 斐波那契DP实现
public int fibDP(int n) {if (n <= 1) return n;int[] dp = new int[n+1];dp[0] = 0;dp[1] = 1;for (int i = 2; i <= n; i++) {dp[i] = dp[i-1] + dp[i-2]; // 状态转移方程}return dp[n];
}
3. 空间优化(滚动数组)
public int fibOpt(int n) {if (n <= 1) return n;int prev = 0, curr = 1;for (int i = 2; i <= n; i++) {int sum = prev + curr;prev = curr;curr = sum;}return curr;
}
五、经典案例:爬楼梯问题(LeetCode 70)
1. 问题描述
每次可以爬1或2个台阶,求到达第n阶的不同方法数
2. 暴力递归解法
public int climbStairs(int n) {if (n == 1) return 1;if (n == 2) return 2;return climbStairs(n-1) + climbStairs(n-2);
}
3. DP优化实现
public int climbStairsDP(int n) {if (n <= 2) return n;int[] dp = new int[n+1];dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; i++) {dp[i] = dp[i-1] + dp[i-2];}return dp[n];
}
4. 状态转移方程推导
dp[i] = dp[i-1] + dp[i-2]
解释:到达第i阶的方法数 = 从i-1阶上1步 + 从i-2阶上2步
六、高阶案例:0-1背包问题
1. 问题描述
给定物品重量w[]和价值v[],背包容量C,求最大价值
2. 暴力递归解法
public int knapsack(int[] w, int[] v, int C) {return dfs(w, v, w.length-1, C);
}private int dfs(int[] w, int[] v, int index, int cap) {if (index < 0 || cap <= 0) return 0;// 不选当前物品int no = dfs(w, v, index-1, cap);// 选当前物品(前提:容量足够)int yes = cap >= w[index] ? dfs(w, v, index-1, cap - w[index]) + v[index] : 0;return Math.max(no, yes);
}
3. 记忆化搜索优化
public int knapsackMemo(int[] w, int[] v, int C) {int n = w.length;int[][] memo = new int[n][C+1];return dfs(w, v, n-1, C, memo);
}private int dfs(int[] w, int[] v, int index, int cap, int[][] memo) {if (index < 0 || cap <= 0) return 0;if (memo[index][cap] != 0) return memo[index][cap];int no = dfs(w, v, index-1, cap, memo);int yes = cap >= w[index] ? dfs(w, v, index-1, cap - w[index], memo) + v[index] : 0;memo[index][cap] = Math.max(no, yes);return memo[index][cap];
}
4. 动态规划终极形态
public int knapsackDP(int[] w, int[] v, int C) {int n = w.length;int[][] dp = new int[n+1][C+1];for (int i = 1; i <= n; i++) {for (int j = 1; j <= C; j++) {if (j < w[i-1]) {dp[i][j] = dp[i-1][j]; // 装不下} else {dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j - w[i-1]] + v[i-1]);}}}return dp[n][C];
}
5. 空间压缩技巧(滚动数组)
public int knapsackOpt(int[] w, int[] v, int C) {int[] dp = new int[C+1];for (int i = 0; i < w.length; i++) {for (int j = C; j >= w[i]; j--) { // 必须倒序遍历dp[j] = Math.max(dp[j], dp[j - w[i]] + v[i]);}}return dp[C];
}
七、动态规划解题方法论总结
1. 五步法流程
-
定义状态:明确dp数组的含义
-
推导转移方程:分析状态间的关系
-
初始化:设置边界条件
-
确定遍历顺序:保证前置状态已计算
-
输出结果:从dp数组中提取答案
2. 优化路线图
3. 常见问题处理技巧
-
边界条件处理:增加虚拟头节点(如dp[0])
-
路径记录:使用额外数组保存选择路径
-
维度压缩:滚动数组、位运算优化
八、实战练习建议
-
基础练习
-
LeetCode 70. 爬楼梯(空间优化)
-
LeetCode 118. 杨辉三角(二维DP)
-
-
进阶挑战
-
LeetCode 322. 零钱兑换(完全背包)
-
LeetCode 1143. 最长公共子序列(二维字符串DP)
-
掌握动态规划的关键在于将递归思维转化为状态转移思维。建议从简单问题入手,逐步体会"重叠子问题"的特征,最终达到看到问题就能自然拆分状态的境界。
相关文章:
动态规划详解(二):从暴力递归到动态规划的完整优化之路
目录 一、什么是动态规划?—— 从人类直觉到算法思维 二、暴力递归:最直观的问题分解方式 1. 示例:斐波那契数列 2. 递归树分析(以n5为例) 3. 问题暴露 三、第一次优化:记忆化搜索(Memoiza…...
前端学习——HTML
HTML VSCode常用快捷键HTML标签文本标签列表标签表格Form表单表单元素 块元素与行内元素新增标签 VSCode常用快捷键 代码格式化:ShiftAltF 向上或向下移动一行:AltUp或AltDown 快速复制一行代码:ShiftAltUp或者ShiftAltDown 快速替换&#x…...
12.【线性代数】——图和网络
十二 图和网络(线性代数的应用) 图 g r a p h { n o d e s , e d g e s } graph\{nodes, edges\} graph{nodes,edges}1.关联矩阵2. A A A矩阵的零空间,求解 A x 0 Ax0 Ax0 电势3. A T A^T AT矩阵的零空间,电流总结电流图结论 …...
[环境搭建篇] Windows 环境下如何安装repo工具
Windows 环境下如何安装repo工具 1. 安装前置依赖2. 配置Repo引导脚本方法一:通过Gitee镜像安装(推荐)方法二:通过清华镜像安装 3. 解决依赖问题4. 初始化Repo仓库5. 常见问题解决 前言: 在Windows环境下安装Repo工具需…...
LeetCode 热题 100_字符串解码(71_394_中等_C++)(栈)
LeetCode 热题 100_字符串解码(71_394) 题目描述:输入输出样例:题解:解题思路:思路一(栈): 代码实现代码实现(栈):以思路一为例进行调…...
「DataX」数据迁移-IDEA运行DataX方法总结
背景 业务需求希望把Oracle数据库中的数据,迁移至MySql数据库中,因为需要迁移全量和增量的数据,所以希望想用数据迁移工具进行操作。 经过一些调研查询,最终打算使用DataX进行数据的迁移。 DataX简单介绍 DataX 是阿里云 DataW…...
【 <一> 炼丹初探:JavaWeb 的起源与基础】之 Servlet 过滤器:实现请求的预处理与后处理
<前文回顾> 点击此处查看 合集 https://blog.csdn.net/foyodesigner/category_12907601.html?fromshareblogcolumn&sharetypeblogcolumn&sharerId12907601&sharereferPC&sharesourceFoyoDesigner&sharefromfrom_link <今日更新> 一、过滤器&…...
DeepSeek与浏览器自动化AI Agent构建指南
文章使用到的模型可以用硅基流动中的: 注册链接:硅基流动统一登录 邀请码:FytHp9Xa 一、技术选型阶段 1. 基础组件选择 AI模型:DeepSeek-R1开放API(对话/推理)或DeepSeek-Coder(代码生成&#…...
面试中常问的mysql数据库指令【杭州多测师_王sir】
数据库中的修改表结构、增删改查、用户权限操作DDL 》数据库定义语言 create database,create table drop tableDML 》数据库操作语言 insert into,delete from,update set,DQL 》数据库查询语言 select .... from....crea…...
深度学习驱动的智能化革命:从技术突破到行业实践
第一章 深度学习的技术演进与核心架构 1.1 从浅层网络到深度学习的范式转变 深度学习的核心在于通过多层次非线性变换自动提取数据特征,其发展历程可划分为三个阶段:符号主义时代的规则驱动(1950s-1980s)、连接主义时代的浅层网络(1990s-2000s)以及深度学习时代的端到端…...
基于编译器特性浅析C++程序性能优化
最近在恶补计算机基础知识,学到CSAPP第五章的内容,在这里总结并且展开一下C程序性能优化相关的内容。 衡量程序性能的方式 一般而言,程序的性能可以用CPE(Cycles Per Element)来衡量,其指的是处理每个元素…...
服务器上通过ollama部署deepseek
2025年1月下旬,DeepSeek的R1模型发布后的一周内就火了,性能比肩OpenAI的o1模型,且训练成本仅为560万美元,成本远低于openAI,使得英伟达股票大跌。 下面我们来看下如何个人如何部署deepseek-r1模型。 我是用的仙宫云的…...
Android Coil总结
文章目录 Android Coil总结概述添加依赖用法基本用法占位图变形自定义ImageLoader取消加载协程支持缓存清除缓存监听 简单封装 Android Coil总结 概述 Coil 是一个用于 Android 的 Kotlin 图像加载库,旨在简化图像加载和显示的过程。它基于 Kotlin 协程࿰…...
《安富莱嵌入式周报》第351期:DIY半导体制造,工业设备抗干扰提升方法,NASA软件开发规范,小型LCD在线UI编辑器,开源USB PD电源,开源锂电池管理
周报汇总地址:嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 视频版: https://www.bilibili.com/video/BV16C95YEEZs 《安富莱嵌入式周报》第351期:DIY半导体…...
Redis在人员管理系统中的应用示例
用户会话管理 场景:用户登录后存储会话信息,支持多服务器共享 实现: 用户登录成功后,生成唯一Token(如JWT),作为Redis的Key Value存储用户ID、角色、权限等信息,设置过期时间&…...
The Wedding Juicer POJ - 2227
采取从外层边界,一步一步向内部拓展的策略,具体来说,一开始将最外面一层的点加入队列,并标记这些点的坐标已经被访问 取出队列中高度最低的点,将其弹出,查看其上下左右的点,如果新点没有被访问…...
# 深入理解RNN(一):循环神经网络的核心计算机制
深入理解RNN:循环神经网络的核心计算机制 RNN示意图 引言 在自然语言处理、时间序列预测、语音识别等涉及序列数据的领域,循环神经网络(RNN)一直扮演着核心角色。尽管近年来Transformer等架构逐渐成为主流,RNN的基本原理和思想依然对于理…...
分布式锁—6.Redisson的同步器组件
大纲 1.Redisson的分布式锁简单总结 2.Redisson的Semaphore简介 3.Redisson的Semaphore源码剖析 4.Redisson的CountDownLatch简介 5.Redisson的CountDownLatch源码剖析 1.Redisson的分布式锁简单总结 (1)可重入锁RedissonLock (2)公平锁RedissonFairLock (3)联锁MultiL…...
同步 Fork 仓库的命令
同步 Fork 仓库的命令 要将您 fork 的仓库的 main 分支与原始仓库(fork 源)同步,您可以使用以下命令: 首先,确保您已经添加了原始仓库作为远程仓库(如果尚未添加): git remote add…...
基于PySide6的CATIA零件自动化着色工具开发实践
引言 在汽车及航空制造领域,CATIA作为核心的CAD设计软件,其二次开发能力对提升设计效率具有重要意义。本文介绍一种基于Python的CATIA零件着色工具开发方案,通过PySide6实现GUI交互,结合COM接口操作实现零件着色自动化。该方案成…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
