【漫话机器学习系列】121.偏导数(Partial Derivative)

偏导数(Partial Derivative)详解
1. 引言
在数学分析、机器学习、物理学和工程学中,我们经常会遇到多个变量的函数。这些函数的输出不仅取决于一个变量,而是由多个变量共同决定的。那么,当其中某一个变量发生变化时,函数的输出如何变化呢?这就涉及到了偏导数(Partial Derivative)的概念。
偏导数是多变量微积分的重要工具,它描述了一个多变量函数对其中某一个变量的变化率。在最优化问题、梯度计算、物理模拟等多个领域,偏导数都扮演着关键角色。
本文将详细介绍:
- 偏导数的定义
- 计算方法
- 几何意义
- 在机器学习等领域的应用
2. 偏导数的定义
设 是一个由多个变量
组成的函数,我们希望研究函数在某个变量 xix_ixi 上的变化趋势,而保持其他变量不变,则偏导数的定义如下:
其中:
表示对
进行偏导,即计算函数在该变量上的变化率。
- 其他变量
保持不变。
- 这个极限表示当
发生微小变化时,函数 f 的变化速率。
2.1. 与普通导数的区别
普通导数(单变量函数的导数)是研究一个变量的函数 y = f(x) 随着 x 变化的变化率:
而偏导数适用于多个变量的函数,它只关注某一个变量的变化率,其他变量保持不变。
3. 偏导数的计算方法
3.1. 基本计算规则
计算偏导数时,我们假设所有变量除了要求偏导的变量外都是常数,然后按照普通导数的方法求导。
示例 1:二元函数
给定函数:
求 fff 对 x 和 y 的偏导数。
(1)对 x 求偏导
对 x 的导数是 2x。
- 3xy 对 x 的导数是 3y(因为 y 被视为常数)。
对 x 的导数是 0(因为它不含 x)。
所以:
(2)对 y 求偏导
对 y 的导数是 0(因为它不含 y)。
- 3xy 对 y 的导数是 3x(因为 x 被视为常数)。
对 y 的导数是 2y。
所以:
3.2. 高阶偏导数
偏导数可以继续求导,形成二阶偏导数,甚至更高阶的偏导数。二阶偏导数有两种情况:
- 同一个变量求两次导数(纯二阶偏导):
- 对不同变量求两次导数(混合二阶偏导):
示例 2:求二阶偏导
继续对示例 1的 计算二阶偏导数:
- 纯二阶偏导:
- 混合二阶偏导:
4. 几何意义
偏导数的几何意义可以用曲面切线的斜率来理解:
代表在固定 y 的情况下,曲面沿 x 轴方向的变化率。
代表在固定 x 的情况下,曲面沿 y 轴方向的变化率。
可以想象,一个多变量函数 f(x, y) 是一个三维曲面,而偏导数就是在某个方向上的斜率。
5. 偏导数在机器学习中的应用
5.1. 梯度下降(Gradient Descent)
在机器学习和深度学习中,偏导数用于计算损失函数的梯度,指导模型参数的优化。梯度下降算法的核心思想是:
其中:
是损失函数 J 对参数 θ 的偏导数。
- α 是学习率。
5.2. 计算神经网络的权重更新
神经网络中的反向传播(Backpropagation)算法依赖于偏导数来计算梯度,从而调整权重。
6. 结论
偏导数是研究多变量函数的变化率的重要工具,它在数学、物理、工程和机器学习等领域都有广泛应用。通过计算偏导数,我们可以:
- 了解函数在某个方向上的变化趋势。
- 优化机器学习模型(如梯度下降)。
- 分析三维曲面的形状和斜率。
掌握偏导数是进一步学习多元微积分、优化方法和机器学习的基础!
相关文章:
【漫话机器学习系列】121.偏导数(Partial Derivative)
偏导数(Partial Derivative)详解 1. 引言 在数学分析、机器学习、物理学和工程学中,我们经常会遇到多个变量的函数。这些函数的输出不仅取决于一个变量,而是由多个变量共同决定的。那么,当其中某一个变量发生变化时&…...
Deepseek可以通过多种方式帮助CAD加速工作
自动化操作:通过Deepseek的AI能力,可以编写脚本来自动化重复性任务。例如,使用Python脚本调用Deepseek API,在CAD中实现自动化操作。 插件开发:结合Deepseek进行二次开发,可以创建自定义的CAD插件。例如&a…...
【工具使用】IDEA 社区版如何创建 Spring Boot 项目(详细教程)
IDEA 社区版如何创建 Spring Boot 项目(详细教程) Spring Boot 以其简洁、高效的特性,成为 Java 开发的主流框架之一。虽然 IntelliJ IDEA 专业版提供了Spring Boot 项目向导,但 社区版(Community Edition)…...
QT中串口打开按钮如何点击打开后又能点击关闭
前言: if (!portOpen) { // 打开串口 if (!sp18Controller->initializePort("COM5", 38400)) { QMessageBox::critical(this, "Error", "Failed to open serial port."); return; } ui->btnOpenPort_2->setText("Close…...
【AI深度学习基础】PyTorch初探
引言 PyTorch 是由 Facebook 开源的深度学习框架,专门针对 GPU 加速的深度神经网络编程,它的核心概念包括张量(Tensor)、计算图和自动求导机制。PyTorch作为Facebook开源的深度学习框架,凭借其动态计算图和直观的API设…...
springboot011基于springboot的课程作业管理系统(源码+包运行+LW+技术指导)
项目描述 临近学期结束,还是毕业设计,你还在做java程序网络编程,期末作业,老师的作业要求觉得难了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等,你想解决的问题,今天…...
快速从C过度C++(一):namespace,C++的输入和输出,缺省参数,函数重载
📝前言: 本文章适合有一定C语言编程基础的读者浏览,主要介绍从C语言到C过度,我们首先要掌握的一些基础知识,以便于我们快速进入C的学习,为后面的学习打下基础。 这篇文章的主要内容有: 1&#x…...
PostgreSQL时间计算大全:从时间差到时区转换(保姆级教程)
一、时间计算的三大核心场景 当你遇到这些需求时,本文就是你的救星🌟: 倒计时功能:计算活动剩余天数 用户行为分析:统计操作间隔时间 跨国系统:多时区时间统一管理 报表生成:自动计算同比/环…...
laravel es 相关代码 ElasticSearch
来源: github <?phpnamespace App\Http\Controllers;use Elastic\Elasticsearch\ClientBuilder; use Illuminate\Support\Facades\DB;class ElasticSearch extends Controller {public $client null;public function __construct(){$this->client ClientB…...
题目 3220 ⭐因数计数⭐【数理基础】蓝桥杯2024年第十五届省赛
小蓝随手写出了含有 n n n 个正整数的数组 a 1 , a 2 , ⋅ ⋅ ⋅ , a n {a_1, a_2, , a_n} a1,a2,⋅⋅⋅,an ,他发现可以轻松地算出有多少个有序二元组 ( i , j ) (i, j) (i,j) 满足 a j a_j aj 是 a i a_i ai 的一个因数。因此他定义一个整数对 …...
【Java代码审计 | 第十一篇】SSRF漏洞成因及防范
未经许可,不得转载。 文章目录 SSRF漏洞成因Java中发送HTTP请求的函数1、HttpURLConnection2、HttpClient(Java 11)3、第三方库Request库漏洞示例OkHttpClient漏洞示例HttpClients漏洞示例 漏洞代码示例防范标准代码 SSRF SSRF(S…...
RabbitMQ高级特性--消息确认机制
目录 一、消息确认 1.消息确认机制 2.手动确认方法 二、代码示例 1. AcknowledgeMode.NONE 1.1 配置文件 1.2 生产者 1.3 消费者 1.4 运行程序 2.AcknowledgeMode.AUTO 3.AcknowledgeMode.MANUAL 一、消息确认 1.消息确认机制 生产者发送消息之后,到达消…...
C++复试笔记(一)
Setw 是C中用于设置输出字段宽度的函数。当使用 setw(3) 时,它会设置紧接着的输出字段的最小宽度为3个字符。如果字段内容长度小于3,则会在左侧填充空格以达到指定宽度;如果内容长度大于或等于3,则全部内容将被输出,…...
K8s 1.27.1 实战系列(四)验证集群及应用部署测试
一、验证集群可用性 1、检查节点 kubectl get nodes ------------------------------------------------------ NAME STATUS ROLES AGE VERSION k8s-master Ready control-plane 3h48m v1.27.1 k8s-node1 Ready <none> …...
基于Spring Boot的健美操评分管理系统设计与实现(LW+源码+讲解)
专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...
H5页面在移动端自动横屏
首先需要再head标签添加这样一段代码 <meta name="viewport" content="width=device-width,height=device-width,initial-scale=1.0,user-scalable=no">因为需求是为了满足WEB端和手机端都可以查看整体效果 但由于UI没有设计移动端的样式 所以我想说…...
【从0到1搞懂大模型】神经网络的实现:数据策略、模型调优与评估体系(3)
一、数据集的划分 (1)按一定比例划分为训练集和测试集 我们通常取8-2、7-3、6-4、5-5比例切分,直接将数据随机划分为训练集和测试集,然后使用训练集来生成模型,再用测试集来测试模型的正确率和误差,以验证…...
从0到1入门RabbitMQ
一、同步调用 优势:时效性强,等待到结果后才返回 缺点: 拓展性差性能下降级联失败问题 二、异步调用 优势: 耦合度低,拓展性强异步调用,无需等待,性能好故障隔离,下游服务故障不影响…...
MySQL数据库复杂的增删改查操作
在前面的文章中,我们主要学习了数据库的基础知识以及基本的增删改查的操作。接下去将以一个比较实际的公司数据库为例子,进行讲解一些较为复杂且现时需求的例子。 基础知识: 一文清晰梳理Mysql 数据库基础知识_字段变动如何梳理清楚-CSDN博…...
点云软件VeloView开发环境搭建与编译
官方编译说明 LidarView / LidarView-Superbuild GitLab 我的编译过程: 安装vs2019,windows sdk,qt5.14.2(没安装到5.15.7),git,cmake3.31,python3.7.9,ninja下载放到…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
云原生周刊:k0s 成为 CNCF 沙箱项目
开源项目推荐 HAMi HAMi(原名 k8s‑vGPU‑scheduler)是一款 CNCF Sandbox 级别的开源 K8s 中间件,通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度,为容器提供统一接口,实现细粒度资源配额…...
