c++ 返回引用
在C++中,返回引用是一种常见的做法,特别是在需要返回大型对象时,以避免不必要的复制,从而提高程序的效率。返回引用通常有两种情况:返回局部变量的引用和返回成员变量的引用。下面分别讨论这两种情况以及如何安全地实现它们。
1. 返回局部变量的引用
警告:直接返回局部变量的引用是不安全的,因为一旦局部变量被销毁(例如,函数执行完毕后),返回的引用将指向一个无效的内存位置。
int& getLocalVar() {int x = 10;return x; // 错误:返回局部变量的引用
}
正确做法:
-
返回一个指向堆内存的指针或智能指针。
-
使用静态局部变量(虽然在某些情况下可能导致线程安全问题)。
使用堆内存的示例:
int& getHeapVar() {int* x = new int(10); // 在堆上分配内存return *x; // 返回引用
}// 使用后记得释放内存
int main() {int& ref = getHeapVar();// 使用 ref...delete &ref; // 注意这里的用法,通常更推荐使用智能指针
}
int& getStaticVar() {static int x = 10; // 静态局部变量,生命周期贯穿程序运行期return x; // 安全地返回引用
}
2. 返回成员变量的引用
返回成员变量的引用是安全的,因为成员变量与对象同生共死,只要对象存在,成员变量就一直有效。
示例:
class MyClass {
public:int value;int& getValueRef() {return value; // 返回成员变量的引用}
};
注意事项
-
确保不要返回悬挂引用(dangling reference),即不要返回已经销毁或不再有效的对象的引用。
-
使用智能指针(如
std::unique_ptr或std::shared_ptr)来管理动态分配的内存,可以自动处理内存释放,减少内存泄漏的风险。例如:
std::unique_ptr<int> getHeapVar() {return std::make_unique<int>(10); // 使用智能指针返回堆内存的引用(实际上是拷贝)
}
-
当需要返回对动态分配对象的引用时,可以考虑通过智能指针间接访问。例如,返回一个指向
std::unique_ptr的引用。但通常更推荐直接返回拷贝或值(对于小对象),除非确实需要管理复杂的资源或生命周期。
总之,在C++中正确使用引用可以提高性能和代码效率,但必须注意避免悬挂引用和确保对象的生命周期管理得当。
C++ 把引用作为返回值 | 菜鸟教程
#include <iostream>using namespace std;double vals[] = {10.1, 12.6, 33.1, 24.1, 50.0};double& setValues(int i) { double& ref = vals[i]; return ref; // 返回第 i 个元素的引用,ref 是一个引用变量,ref 引用 vals[i]}// 要调用上面定义函数的主函数
int main ()
{cout << "改变前的值" << endl;for ( int i = 0; i < 5; i++ ){cout << "vals[" << i << "] = ";cout << vals[i] << endl;}setValues(1) = 20.23; // 改变第 2 个元素setValues(3) = 70.8; // 改变第 4 个元素cout << "改变后的值" << endl;for ( int i = 0; i < 5; i++ ){cout << "vals[" << i << "] = ";cout << vals[i] << endl;}return 0;
}
c++ 函数返回引用_c++ 返回引用-CSDN博客
4,引用返回左值。返回引用的函数返回一个左值。因此这样的函数可用于任何要求使用左值的地方。示例见:c++ primer p215
5,由于返回值直接指向了一个生命期尚未结束的变量,因此,对于函数返回值(或者称为函数结果)本身的任何操作,都在实际上,是对那个变量的操作,这就是引入const类型的返回的意义。当使用了const关键字后,即意味着函数的返回值不能立即得到修改!如下代码,将无法编译通过,这就是因为返回值立即进行了++操作(相当于对变量z进行了++操作),而这对于该函数而言,是不允许的。如果去掉const,再行编译,则可以获得通过,并且打印形成z = 7的结果。
include <iostream>include <cstdlib>const int& abc(int a, int b, int c, int& result){result = a + b + c;return result;}int main() {int a = 1; int b = 2; int c=3;int z;abc(a, b, c, z)++; //wrong: returning a const referencecout << "z= " << z << endl;SYSTEM("PAUSE");return 0;}
6.什么时候返回引用是正确的?而什么时候返回const引用是正确的?
返回指向函数调用前就已经存在的对象的引用是正确的。当不希望返回的对象被修改时,返回const引用是正确的。
返回 “值” 和返回 “引用” 是不同的
函数返回值时会产生一个临时变量作为函数返回值的副本,而返回引用时不会产生值的副本,既然是引用,那引用谁呢?这个问题必须清楚,否则将无法理解返回引用到底是个什么概念。以下是几种引用情况:
一、千万不要返回局
相关文章:
c++ 返回引用
在C中,返回引用是一种常见的做法,特别是在需要返回大型对象时,以避免不必要的复制,从而提高程序的效率。返回引用通常有两种情况:返回局部变量的引用和返回成员变量的引用。下面分别讨论这两种情况以及如何安全地实现它…...
Docker篇
1.docker环境搭建: 1.1软件仓库的配置rhel9: #cd/etc/yum.repos.d #vim docker.repo [docker] namedocker-ce baseurlhttps://mirrors.aliyun.com/docker-ce/linux/rhel/9/x86_64/stable gpgcheck0 1.2安装docker并且启动服务 yum install -y dock…...
TypeScript基础类型详解:与JavaScript的对比与核心价值
TypeScript作为JavaScript的超集,最大的特性是引入了静态类型系统。本文将基于TypeScript官网内容,解析其基础类型设计,并与ES/JavaScript进行对比,揭示类型系统的实际价值。 一、基础类型全景图 1. 原生类型的强化 JavaScript原…...
Linux《基础开发工具(中)》
在之前的Linux《基础开发工具(上)》当中已经了解了Linux当中到的两大基础的开发工具yum与vim;了解了在Linux当中如何进行软件的下载以及实现的基本原理、知道了编辑器vim的基本使用方式,那么接下来在本篇当中将接下去继续来了解另…...
CPU 负载 和 CPU利用率 的区别
简单记录下 top 命令中,CPU利用率核CPU负载的概念, (1)CPU利用率:指在一段时间内 表示 CPU 实际工作时间占总时间的百分比。表示正在执行进程的时间比例,包括用户空间和内核空间程序的执行时间。通常包含以…...
vue源码(二)
文章目录 数据代理示例 初始化组件实例计算属性基本用法ComputedReflmpl类计算属性的创建 Vue3的特点及优势声明式框架采用虚拟DOM区分编译时和进行时 Vue3设计思想 数据代理 示例 以下代码主要是有一个msg的响应式数据,点击按钮后修改msg的内容。根据代码可知有两…...
Ubuntu切换lowlatency内核
文章目录 一. 前言二. 开发环境三. 具体操作 一. 前言 低延迟内核(Lowlatency Kernel) 旨在为需要低延迟响应的应用程序设计的内核版本。Linux-lowlatency特别适合音频处理、实时计算、游戏和其他需要及时响应的实时任务。其主要特点是优化了中断处理、调…...
C++算法——差分
1.差分 差分与前缀和的核心思想相同,是预处理,可以在暴力枚举的过程中,快速给出查询的结果,从而优化时间复杂度。 是经典的用空间替换时间的做法。 2.一维差分数组 前缀和与差分是⼀对互逆的运算,对差分数组做前缀…...
猫耳大型活动提效——组件低代码化
1. 引言 猫耳前端在开发活动的过程中,经历过传统的 pro code 阶段,即活动页面完全由前端开发编码实现,直到 2020 年接入公司内部的低代码活动平台,满足了大部分日常活动的需求,运营可自主配置活动并上线,释…...
亿级分布式系统架构演进实战(二)- 横向扩展(服务无状态化)
亿级分布式系统架构演进实战(一)- 总体概要 服务无状态化详细设计 目标:确保服务实例完全无状态,可任意扩缩容 1. 会话存储改造(Session Management) 核心问题:传统单体应用中,用…...
零成本短视频爆款制造手册
——Q版+情感+互动的流量密码拆解 适用平台:抖音/快手/视频号 核心指标:点赞率>10% | 完播率>40% | 涨粉成本<0.3元 一、底层逻辑框架 1. 爆款元素融合公式 [ 3秒钩子 ] + [ 7秒沉浸 ] + [ 5秒引爆 ] = 15秒黄金结构 │ │ └─▶ 互动指令+情感…...
红队思想:Live off the Land - 靠山吃山,靠水吃水
在网络安全领域,尤其是红队(Red Team)渗透测试中,“Live off the Land”(简称 LotL,中文可译为“靠山吃山,靠水吃水”)是一种极具隐秘性和实用性的攻击策略。这一理念源于现实生活中…...
C语言八股---预处理,编译,汇编与链接篇
前言 从多个.c文件到达一个可执行文件的四步: 预处理–>编译–>汇编–>链接 预处理 预处理过程就是预处理器处理这些预处理指令(要不然编译器完全不认识),最终会生成 main.i的文件 主要做的事情有如下几点: 展开头文件展开宏条件编译删除注释添加行号等信息保留…...
平衡二叉树(AVL树)
平衡二叉树是啥我就不多说了,本篇博客只讲原理与方法。 首先引入平衡因子的概念。平衡因子(Balance Factor),以下简称bf。 bf 右子树深度 - 左子树深度。平衡结点的平衡因子可为:-1,0,1。除此…...
SpringBoot(一)--搭建架构5种方法
目录 一、⭐Idea从spring官网下载打开 2021版本idea 1.打开创建项目 2.修改pom.xml文件里的版本号 2017版本idea 二、从spring官网下载再用idea打开 三、Idea从阿里云的官网下载打开 编辑 四、Maven项目改造成springboot项目 五、从阿里云官网下载再用idea打开 Spri…...
RabbitMQ使用延迟消息
RabbitMQ使用延迟消息 1.什么情况下使用延迟消息 延迟消息适用于需要在一段时间后执行某些操作的场景,常见的有以下几类: 1.1. 订单超时取消(未支付自动取消) 场景: 用户下单后,如果 30 分钟内未付款&a…...
MyBatis-Plus 分页查询接口返回值问题剖析
在使用 MyBatis-Plus 进行分页查询时,很多开发者会遇到一个常见的问题:当分页查询接口返回值定义为 Page<T> 时,执行查询会抛出异常;而将返回值修改为 IPage<T> 时,分页查询却能正常工作。本文将从 MyBatis-Plus 的分页机制入手,详细分析这一问题的根源,并提…...
DeepLabv3+改进7:在主干网络中添加SegNext_Attention|助力涨点
🔥【DeepLabv3+改进专栏!探索语义分割新高度】 🌟 你是否在为图像分割的精度与效率发愁? 📢 本专栏重磅推出: ✅ 独家改进策略:融合注意力机制、轻量化设计与多尺度优化 ✅ 即插即用模块:ASPP+升级、解码器 PS:订阅专栏提供完整代码 论文简介 近期有关移动网络设计…...
c语言笔记 内存管理之栈内存
物理内存和虚拟内存 在c语言的程序需要内存资源,用来存放变量,常量,函数代码等,不同的内容存放在不同的内存区域,不同的内存区域有着不同的特征。 c语言的每一个进程都有着一片结构相同的 虚拟内存,虚拟内…...
分布式事务的原理
文章目录 基于 XA 协议的两阶段提交(2PC)三阶段提交(3PC)TCC(Try-Confirm-Cancel)Saga 模式消息队列(可靠消息最终一致性) 分布式事务是指在分布式系统中,涉及多个节点或…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知,帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量,能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度,还为机器人、医疗设备和制造业的智…...
