当前位置: 首页 > news >正文

数据规整:聚合、合并和重塑

目录

  • 一、层次化索引
    • 重排与分级排序
    • 根据级别汇总统计
  • 二、合并数据集
    • 数据库风格的DataFrame合并
    • 索引上的合并
    • 轴向连接
    • 合并重叠数据
  • 三、重塑和轴向旋转
    • 重塑层次化索引
    • 将“长格式”旋转为“宽格式”
    • 将“宽格式”旋转为“长格式”

一、层次化索引

层次化索引(hierarchical indexing)是pandas的一项重要功能,它使你能在一个轴上拥有多个(两个以上)索引级别。抽象点说,它使你能以低维度形式处理高维度数据。我们先来看一个简单的例子:创建一个Series,并用一个由列表或数组组成的列表作为索引:

In [9]: data = pd.Series(np.random.randn(9),...:                  index=[['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'd'],...:                         [1, 2, 3, 1, 3, 1, 2, 2, 3]])In [10]: data
Out[10]: 
a  1   -0.2047082    0.4789433   -0.519439
b  1   -0.5557303    1.965781
c  1    1.3934062    0.092908
d  2    0.2817463    0.769023
dtype: float64

看到的结果是经过美化的带有MultiIndex索引的Series的格式。索引之间的“间隔”表示“直接使用上面的标签”:

In [11]: data.index
Out[11]: 
MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]],labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 2, 0, 1, 1, 2]])

对于一个层次化索引的对象,可以使用所谓的部分索引,使用它选取数据子集的操作更简单:

In [12]: data['b']
Out[12]: 
1   -0.555730
3    1.965781
dtype: float64In [13]: data['b':'c']
Out[13]: 
b  1   -0.5557303    1.965781
c  1    1.3934062    0.092908
dtype: float64In [14]: data.loc[['b', 'd']]
Out[14]: 
b  1   -0.5557303    1.965781
d  2    0.2817463    0.769023
dtype: float64

有时甚至还可以在“内层”中进行选取

In [15]: data.loc[:, 2]
Out[15]: 
a    0.478943
c    0.092908
d    0.281746
dtype: float64

对于一个DataFrame,每条轴都可以有分层索引:

In [18]: frame = pd.DataFrame(np.arange(12).reshape((4, 3)),....:                      index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],....:                      columns=[['Ohio', 'Ohio', 'Colorado'],....:                               ['Green', 'Red', 'Green']])In [19]: frame
Out[19]: Ohio     ColoradoGreen Red    Green
a 1     0   1        22     3   4        5
b 1     6   7        82     9  10       11

各层都可以有名字(可以是字符串,也可以是别的Python对象)。如果指定了名称,它们就会显示在控制台输出中:

In [20]: frame.index.names = ['key1', 'key2']In [21]: frame.columns.names = ['state', 'color']In [22]: frame
Out[22]: 
state      Ohio     Colorado
color     Green Red    Green
key1 key2                   
a    1        0   1        22        3   4        5
b    1        6   7        82        9  10       11

重排与分级排序

有时,你需要重新调整某条轴上各级别的顺序,或根据指定级别上的值对数据进行排序。swaplevel接受两个级别编号或名称,并返回一个互换了级别的新对象(但数据不会发生变化):

In [24]: frame.swaplevel('key1', 'key2')
Out[24]: 
state      Ohio     Colorado
color     Green Red    Green
key2 key1                   
1    a        0   1        2
2    a        3   4        5
1    b        6   7        8
2    b        9  10       11

而sort_index则根据单个级别中的值对数据进行排序。交换级别时,常常也会用到sort_index,这样最终结果就是按照指定顺序进行字母排序了:

In [25]: frame.sort_index(level=1)
Out[25]: 
state      Ohio     Colorado
color     Green Red    Green
key1 key2                   
a    1        0   1        2
b    1        6   7        8
a    2        3   4        5
b    2        9  10       11In [26]: frame.swaplevel(0, 1).sort_index(level=0)
Out[26]: 
state      Ohio     Colorado
color     Green Red    Green
key2 key1                   
1    a        0   1        2b        6   7        8
2    a        3   4        5b        9  10       11

根据级别汇总统计

许多对DataFrame和Series的描述和汇总统计都有一个level选项,它用于指定在某条轴上求和的级别。再以上面那个DataFrame为例,我们可以根据行或列上的级别来进行求和:

In [27]: frame.sum(level='key2')
Out[27]: 
state  Ohio     Colorado
color Green Red    Green
key2                    
1         6   8       10
2        12  14       16In [28]: frame.sum(level='color', axis=1)
Out[28]: 
color      Green  Red
key1 key2            
a    1         2    12         8    4
b    1        14    72        20   10

DataFrame的set_index函数会将其一个或多个列转换为行索引,并创建一个新的DataFrame:

In [29]: frame = pd.DataFrame({'a': range(7), 'b': range(7, 0, -1),....:                       'c': ['one', 'one', 'one', 'two', 'two',....:                             'two', 'two'],....:                       'd': [0, 1, 2, 0, 1, 2, 3]})In [30]: frame
Out[30]: a  b    c  d
0  0  7  one  0
1  1  6  one  1
2  2  5  one  2
3  3  4  two  0
4  4  3  two  1
5  5  2  two  2
6  6  1  two  3

默认情况下,那些列会从DataFrame中移除,但也可以将其保留下来:

In [33]: frame.set_index(['c', 'd'], drop=False)
Out[33]: a  b    c  d
c   d              
one 0  0  7  one  01  1  6  one  12  2  5  one  2
two 0  3  4  two  01  4  3  two  12  5  2  two  23  6  1  two  3

reset_index的功能跟set_index刚好相反,层次化索引的级别会被转移到列里面:


In [34]: frame2.reset_index()
Out[34]:
c  d  a  b
0  one  0  0  7
1  one  1  1  6
2  one  2  2  5
3  two  0  3  4
4  two  1  4  3
5  two  2  5  2
6  two  3  6  1

二、合并数据集

pandas对象中的数据可以通过一些方式进行合并:

  • pandas.merge可根据一个或多个键将不同DataFrame中的行连接起来。SQL或其他关系型数据库的用户对此应该会比较熟悉,因为它实现的就是数据库的join操作。
  • pandas.concat可以沿着一条轴将多个对象堆叠到一起。
  • 实例方法combine_first可以将重复数据拼接在一起,用一个对象中的值填充另一个对象中的缺失值。
    我将分别对它们进行讲解,并给出一些例子。本书剩余部分的示例中将经常用到它们。

数据库风格的DataFrame合并

数据集的合并(merge)或连接(join)运算是通过一个或多个键将行连接起来的。这些运算是关系型数据库(基于SQL)的核心。pandas的merge函数是对数据应用这些算法的主要切入点。

以一个简单的例子开始:

In [35]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],....:                     'data1': range(7)})In [36]: df2 = pd.DataFrame({'key': ['a', 'b', 'd'],....:                     'data2': range(3)})In [37]: df1
Out[37]: data1 key
0      0   b
1      1   b
2      2   a
3      3   c
4      4   a
5      5   a
6      6   bIn [38]: df2
Out[38]: data2 key
0      0   a
1      1   b
2      2   d

这是一种多对一的合并。df1中的数据有多个被标记为a和b的行,而df2中key列的每个值则仅对应一行。对这些对象调用merge即可得到:

In [39]: pd.merge(df1, df2)
Out[39]: data1 key  data2
0      0   b      1
1      1   b      1
2      6   b      1
3      2   a      0
4      4   a      0
5      5   a      0

注意,我并没有指明要用哪个列进行连接。如果没有指定,merge就会将重叠列的列名当做键。不过,最好明确指定一下:

In [40]: pd.merge(df1, df2, on='key')
Out[40]: data1 key  data2
0      0   b      1
1      1   b      1
2      6   b      1
3      2   a      0
4      4   a      0
5      5   a      0

如果两个对象的列名不同,也可以分别进行指定:

In [41]: df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],....:                     'data1': range(7)})In [42]: df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'],....:                     'data2': range(3)})In [43]: pd.merge(df3, df4, left_on='lkey', right_on='rkey')
Out[43]: data1 lkey  data2 rkey
0      0    b      1    b
1      1    b      1    b
2      6    b      1    b
3      2    a      0    a
4      4    a      0    a
5      5    a      0    a

可能你已经注意到了,结果里面c和d以及与之相关的数据消失了。默认情况下,merge做的是“内连接”;结果中的键是交集。其他方式还有"left"、“right"以及"outer”。外连接求取的是键的并集,组合了左连接和右连接的效果:

In [44]: pd.merge(df1, df2, how='outer')
Out[44]: data1 key  data2
0    0.0   b    1.0
1    1.0   b    1.0
2    6.0   b    1.0
3    2.0   a    0.0
4    4.0   a    0.0
5    5.0   a    0.0
6    3.0   c    NaN
7    NaN   d    2.0

在这里插入图片描述
多键合并

In [51]: left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'],....:                      'key2': ['one', 'two', 'one'],....:                      'lval': [1, 2, 3]})In [52]: right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],....:                       'key2': ['one', 'one', 'one', 'two'],....:                       'rval': [4, 5, 6, 7]})In [53]: pd.merge(left, right, on=['key1', 'key2'], how='outer')
Out[53]: key1 key2  lval  rval
0  foo  one   1.0   4.0
1  foo  one   1.0   5.0
2  foo  two   2.0   NaN
3  bar  one   3.0   6.0
4  bar  two   NaN   7.0

对于合并运算需要考虑的最后一个问题是对重复列名的处理。虽然你可以手工处理列名重叠的问题(查看前面介绍的重命名轴标签),但merge有一个更实用的suffixes选项,用于指定附加到左右两个DataFrame对象的重叠列名上的字符串:

In [54]: pd.merge(left, right, on='key1')
Out[54]: key1 key2_x  lval key2_y  rval
0  foo    one     1    one     4
1  foo    one     1    one     5
2  foo    two     2    one     4
3  foo    two     2    one     5
4  bar    one     3    one     6
5  bar    one     3    two     7In [55]: pd.merge(left, right, on='key1', suffixes=('_left', '_right'))
Out[55]: key1 key2_left  lval key2_right  rval
0  foo       one     1        one     4
1  foo       one     1        one     5
2  foo       two     2        one     4
3  foo       two     2        one     5
4  bar       one     3        one     6
5  bar       one     3        two     7

在这里插入图片描述
在这里插入图片描述

索引上的合并

有时候,DataFrame中的连接键位于其索引中。在这种情况下,你可以传入left_index=True或right_index=True(或两个都传)以说明索引应该被用作连接键:

In [56]: left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],....:                       'value': range(6)})In [57]: right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])In [58]: left1
Out[58]:key  value
0   a      0
1   b      1
2   a      2
3   a      3
4   b      4
5   c      5In [59]: right1
Out[59]: group_val
a        3.5
b        7.0In [60]: pd.merge(left1, right1, left_on='key', right_index=True)
Out[60]: key  value  group_val
0   a      0        3.5
2   a      2        3.5
3   a      3        3.5
1   b      1        7.0
4   b      4        7.0

由于默认的merge方法是求取连接键的交集,因此你可以通过外连接的方式得到它们的并集:

In [61]: pd.merge(left1, right1, left_on='key', right_index=True, how='outer')
Out[61]: key  value  group_val
0   a      0        3.5
2   a      2        3.5
3   a      3        3.5
1   b      1        7.0
4   b      4        7.0
5   c      5        NaN

DataFrame还有一个便捷的join实例方法,它能更为方便地实现按索引合并。它还可用于合并多个带有相同或相似索引的DataFrame对象,但要求没有重叠的列。在上面那个例子中,我们可以编写:

In [73]: left2.join(right2, how='outer')
Out[73]: Ohio  Nevada  Missouri  Alabama
a   1.0     2.0       NaN      NaN
b   NaN     NaN       7.0      8.0
c   3.0     4.0       9.0     10.0
d   NaN     NaN      11.0     12.0
e   5.0     6.0      13.0     14.0

轴向连接

另一种数据合并运算也被称作连接(concatenation)、绑定(binding)或堆叠(stacking)。NumPy的concatenation函数可以用NumPy数组来做:

In [79]: arr = np.arange(12).reshape((3, 4))In [80]: arr
Out[80]: 
array([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])In [81]: np.concatenate([arr, arr], axis=1)
Out[81]: 
array([[ 0,  1,  2,  3,  0,  1,  2,  3],[ 4,  5,  6,  7,  4,  5,  6,  7],[ 8,  9, 10, 11,  8,  9, 10, 11]])

对于pandas对象(如Series和DataFrame),带有标签的轴使你能够进一步推广数组的连接运算。具体点说,你还需要考虑以下这些东西:

  • 如果对象在其它轴上的索引不同,我们应该合并这些轴的不同元素还是只使用交集?
  • 连接的数据集是否需要在结果对象中可识别?
  • 连接轴中保存的数据是否需要保留?许多情况下,DataFrame默认的整数标签最好在连接时删掉。
    pandas的concat函数提供了一种能够解决这些问题的可靠方式。我将给出一些例子来讲解其使用方式。假设有三个没有重叠索引的Series:
In [82]: s1 = pd.Series([0, 1], index=['a', 'b'])In [83]: s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e'])In [84]: s3 = pd.Series([5, 6], index=['f', 'g'])

对这些对象调用concat可以将值和索引粘合在一起:

In [85]: pd.concat([s1, s2, s3])
Out[85]: 
a    0
b    1
c    2
d    3
e    4
f    5
g    6
dtype: int64

默认情况下,concat是在axis=0上工作的,最终产生一个新的Series。如果传入axis=1,则结果就会变成一个DataFrame(axis=1是列):

In [86]: pd.concat([s1, s2, s3], axis=1)
Out[86]: 0    1    2
a  0.0  NaN  NaN
b  1.0  NaN  NaN
c  NaN  2.0  NaN
d  NaN  3.0  NaN
e  NaN  4.0  NaN
f  NaN  NaN  5.0
g  NaN  NaN  6.0

你可以通过join_axes指定要在其它轴上使用的索引:

In [91]: pd.concat([s1, s4], axis=1, join_axes=[['a', 'c', 'b', 'e']])
Out[91]: 0    1
a  0.0  0.0
c  NaN  NaN
b  1.0  1.0
e  NaN  NaN

不过有个问题,参与连接的片段在结果中区分不开。假设你想要在连接轴上创建一个层次化索引。使用keys参数即可达到这个目的:

In [92]: result = pd.concat([s1, s1, s3], keys=['one','two', 'three'])In [93]: result
Out[93]: 
one    a    0b    1
two    a    0b    1
three  f    5g    6
dtype: int64In [94]: result.unstack()
Out[94]: a    b    f    g
one    0.0  1.0  NaN  NaN
two    0.0  1.0  NaN  NaN
three  NaN  NaN  5.0  6.0

如果沿着axis=1对Series进行合并,则keys就会成为DataFrame的列头:

In [95]: pd.concat([s1, s2, s3], axis=1, keys=['one','two', 'three'])
Out[95]: one  two  three
a  0.0  NaN    NaN
b  1.0  NaN    NaN
c  NaN  2.0    NaN
d  NaN  3.0    NaN
e  NaN  4.0    NaN
f  NaN  NaN    5.0
g  NaN  NaN    6.0

在这里插入图片描述

合并重叠数据

还有一种数据组合问题不能用简单的合并(merge)或连接(concatenation)运算来处理。比如说,你可能有索引全部或部分重叠的两个数据集。举个有启发性的例子,我们使用NumPy的where函数,它表示一种等价于面向数组的if-else:

In [108]: a = pd.Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan],.....:               index=['f', 'e', 'd', 'c', 'b', 'a'])In [109]: b = pd.Series(np.arange(len(a), dtype=np.float64),.....:               index=['f', 'e', 'd', 'c', 'b', 'a'])In [110]: b[-1] = np.nanIn [111]: a
Out[111]: 
f    NaN
e    2.5
d    NaN
c    3.5
b    4.5
a    NaN
dtype: float64In [112]: b
Out[112]: 
f    0.0
e    1.0
d    2.0
c    3.0
b    4.0
a    NaN
dtype: float64In [113]: np.where(pd.isnull(a), b, a)
Out[113]: array([ 0. ,  2.5,  2. ,  3.5,  4.5,  nan])

Series有一个combine_first方法,实现的也是一样的功能,还带有pandas的数据对齐:

In [114]: b[:-2].combine_first(a[2:])
Out[114]: 
a    NaN
b    4.5
c    3.0
d    2.0
e    1.0
f    0.0
dtype: float64

对于DataFrame,combine_first自然也会在列上做同样的事情,因此你可以将其看做:用传递对象中的数据为调用对象的缺失数据“打补丁”:

In [115]: df1 = pd.DataFrame({'a': [1., np.nan, 5., np.nan],.....:                     'b': [np.nan, 2., np.nan, 6.],.....:                     'c': range(2, 18, 4)})In [116]: df2 = pd.DataFrame({'a': [5., 4., np.nan, 3., 7.],.....:                     'b': [np.nan, 3., 4., 6., 8.]})In [117]: df1
Out[117]: a    b   c
0  1.0  NaN   2
1  NaN  2.0   6
2  5.0  NaN  10
3  NaN  6.0  14In [118]: df2
Out[118]: a    b
0  5.0  NaN
1  4.0  3.0
2  NaN  4.0
3  3.0  6.0
4  7.0  8.0In [119]: df1.combine_first(df2)
Out[119]: a    b     c
0  1.0  NaN   2.0
1  4.0  2.0   6.0
2  5.0  4.0  10.0
3  3.0  6.0  14.0
4  7.0  8.0   NaN

三、重塑和轴向旋转

有许多用于重新排列表格型数据的基础运算。这些函数也称作重塑(reshape)或轴向旋转(pivot)运算。

重塑层次化索引

层次化索引为DataFrame数据的重排任务提供了一种具有良好一致性的方式。主要功能有二:

  • stack:将数据的列“旋转”为行。
  • unstack:将数据的行“旋转”为列。
    我将通过一系列的范例来讲解这些操作。接下来看一个简单的DataFrame,其中的行列索引均为字符串数组:
In [120]: data = pd.DataFrame(np.arange(6).reshape((2, 3)),.....:                     index=pd.Index(['Ohio','Colorado'], name='state'),.....:                     columns=pd.Index(['one', 'two', 'three'],.....:                     name='number'))In [121]: data
Out[121]: 
number    one  two  three
state                    
Ohio        0    1      2
Colorado    3    4      5
# 对该数据使用stack方法即可将列转换为行,得到一个Series:
In [122]: result = data.stack()In [123]: result
Out[123]: 
state     number
Ohio      one       0two       1three     2
Colorado  one       3two       4three     5
dtype: int64
#对于一个层次化索引的Series,你可以用unstack将其重排为一个DataFrame:
In [124]: result.unstack()
Out[124]: 
number    one  two  three
state                    
Ohio        0    1      2
Colorado    3    4      5

将“长格式”旋转为“宽格式”

多个时间序列数据通常是以所谓的“长格式”(long)或“堆叠格式”(stacked)存储在数据库和CSV中的。我们先加载一些示例数据,做一些时间序列规整和数据清洗:

In [139]: data = pd.read_csv('examples/macrodata.csv')In [140]: data.head()
Out[140]: year  quarter   realgdp  realcons  realinv  realgovt  realdpi    cpi  \
0  1959.0      1.0  2710.349    1707.4  286.898   470.045   1886.9  28.98   
1  1959.0      2.0  2778.801    1733.7  310.859   481.301   1919.7  29.15   
2  1959.0      3.0  2775.488    1751.8  289.226   491.260   1916.4  29.35   
3  1959.0      4.0  2785.204    1753.7  299.356   484.052   1931.3  29.37   
4  1960.0      1.0  2847.699    1770.5  331.722   462.199   1955.5  29.54   m1  tbilrate  unemp      pop  infl  realint  
0  139.7      2.82    5.8  177.146  0.00     0.00
1  141.7      3.08    5.1  177.830  2.34     0.74  
2  140.5      3.82    5.3  178.657  2.74     1.09  
3  140.0      4.33    5.6  179.386  0.27     4.06  
4  139.6      3.50    5.2  180.007  2.31     1.19  In [141]: periods = pd.PeriodIndex(year=data.year, quarter=data.quarter,.....:                          name='date')In [142]: columns = pd.Index(['realgdp', 'infl', 'unemp'], name='item')In [143]: data = data.reindex(columns=columns)In [144]: data.index = periods.to_timestamp('D', 'end')In [145]: ldata = data.stack().reset_index().rename(columns={0: 'value'})

这就是多个时间序列(或者其它带有两个或多个键的可观察数据,这里,我们的键是date和item)的长格式。表中的每行代表一次观察。

关系型数据库(如MySQL)中的数据经常都是这样存储的,因为固定架构(即列名和数据类型)有一个好处:随着表中数据的添加,item列中的值的种类能够增加。在前面的例子中,date和item通常就是主键(用关系型数据库的说法),不仅提供了关系完整性,而且提供了更为简单的查询支持。有的情况下,使用这样的数据会很麻烦,你可能会更喜欢DataFrame,不同的item值分别形成一列,date列中的时间戳则用作索引。DataFrame的pivot方法完全可以实现这个转换:

In [147]: pivoted = ldata.pivot('date', 'item', 'value')In [148]: pivoted
Out[148]: 
item        infl    realgdp  unemp
date                              
1959-03-31  0.00   2710.349    5.8
1959-06-30  2.34   2778.801    5.1
1959-09-30  2.74   2775.488    5.3
1959-12-31  0.27   2785.204    5.6
1960-03-31  2.31   2847.699    5.2
1960-06-30  0.14   2834.390    5.2
1960-09-30  2.70   2839.022    5.6
1960-12-31  1.21   2802.616    6.3
1961-03-31 -0.40   2819.264    6.8
1961-06-30  1.47   2872.005    7.0
...          ...        ...    ...
2007-06-30  2.75  13203.977    4.5
2007-09-30  3.45  13321.109    4.7
2007-12-31  6.38  13391.249    4.8
2008-03-31  2.82  13366.865    4.9
2008-06-30  8.53  13415.266    5.4
2008-09-30 -3.16  13324.600    6.0
2008-12-31 -8.79  13141.920    6.9
2009-03-31  0.94  12925.410    8.1
2009-06-30  3.37  12901.504    9.2
2009-09-30  3.56  12990.341    9.6
[203 rows x 3 columns]

前两个传递的值分别用作行和列索引,最后一个可选值则是用于填充DataFrame的数据列。假设有两个需要同时重塑的数据列:

In [149]: ldata['value2'] = np.random.randn(len(ldata))In [150]: ldata[:10]
Out[150]: date     item     value    value2
0 1959-03-31  realgdp  2710.349  0.523772
1 1959-03-31     infl     0.000  0.000940
2 1959-03-31    unemp     5.800  1.343810
3 1959-06-30  realgdp  2778.801 -0.713544
4 1959-06-30     infl     2.340 -0.831154
5 1959-06-30    unemp     5.100 -2.370232
6 1959-09-30  realgdp  2775.488 -1.860761
7 1959-09-30     infl     2.740 -0.860757
8 1959-09-30    unemp     5.300  0.560145
9 1959-12-31  realgdp  2785.204 -1.265934

如果忽略最后一个参数,得到的DataFrame就会带有层次化的列:

In [151]: pivoted = ldata.pivot('date', 'item')In [152]: pivoted[:5]
Out[152]: value                    value2                    
item        infl   realgdp unemp      infl   realgdp     unemp
date                                                          
1959-03-31  0.00  2710.349   5.8  0.000940  0.523772  1.343810
1959-06-30  2.34  2778.801   5.1 -0.831154 -0.713544 -2.370232
1959-09-30  2.74  2775.488   5.3 -0.860757 -1.860761  0.560145
1959-12-31  0.27  2785.204   5.6  0.119827 -1.265934 -1.063512
1960-03-31  2.31  2847.699   5.2 -2.359419  0.332883 -0.199543In [153]: pivoted['value'][:5]
Out[153]: 
item        infl   realgdp  unemp
date                             
1959-03-31  0.00  2710.349    5.8
1959-06-30  2.34  2778.801    5.1
1959-09-30  2.74  2775.488    5.3
1959-12-31  0.27  2785.204    5.6
1960-03-31  2.31  2847.699    5.2

注意,pivot其实就是用set_index创建层次化索引,再用unstack重塑:

In [154]: unstacked = ldata.set_index(['date', 'item']).unstack('item')In [155]: unstacked[:7]
Out[155]: value                    value2                    
item        infl   realgdp unemp      infl   realgdp     unemp
date                                                          
1959-03-31  0.00  2710.349   5.8  0.000940  0.523772  1.343810
1959-06-30  2.34  2778.801   5.1 -0.831154 -0.713544 -2.370232
1959-09-30  2.74  2775.488   5.3 -0.860757 -1.860761  0.560145
1959-12-31  0.27  2785.204   5.6  0.119827 -1.265934 -1.063512
1960-03-31  2.31  2847.699   5.2 -2.359419  0.332883 -0.199543
1960-06-30  0.14  2834.390   5.2 -0.970736 -1.541996 -1.307030
1960-09-30  2.70  2839.022   5.6  0.377984  0.286350 -0.753887

将“宽格式”旋转为“长格式”

旋转DataFrame的逆运算是pandas.melt。它不是将一列转换到多个新的DataFrame,而是合并多个列成为一个,产生一个比输入长的DataFrame。看一个例子:

In [157]: df = pd.DataFrame({'key': ['foo', 'bar', 'baz'],.....:                    'A': [1, 2, 3],.....:                    'B': [4, 5, 6],.....:                    'C': [7, 8, 9]})In [158]: df
Out[158]: A  B  C  key
0  1  4  7  foo
1  2  5  8  bar
2  3  6  9  baz

key列可能是分组指标,其它的列是数据值。当使用pandas.melt,我们必须指明哪些列是分组指标。下面使用key作为唯一的分组指标:

In [159]: melted = pd.melt(df, ['key'])In [160]: melted
Out[160]: key variable  value
0  foo        A      1
1  bar        A      2
2  baz        A      3
3  foo        B      4
4  bar        B      5
5  baz        B      6
6  foo        C      7
7  bar        C      8
8  baz        C      9

使用pivot,可以重塑回原来的样子:

In [161]: reshaped = melted.pivot('key', 'variable', 'value')In [162]: reshaped
Out[162]: 
variable  A  B  C
key              
bar       2  5  8
baz       3  6  9
foo       1  4  7

因为pivot的结果从列创建了一个索引,用作行标签,我们可以使用reset_index将数据移回列:

In [163]: reshaped.reset_index()
Out[163]: 
variable  key  A  B  C
0         bar  2  5  8
1         baz  3  6  9
2         foo  1  4  7

你还可以指定列的子集,作为值的列:

In [164]: pd.melt(df, id_vars=['key'], value_vars=['A', 'B'])
Out[164]: key variable  value
0  foo        A      1
1  bar        A      2
2  baz        A      3
3  foo        B      4
4  bar        B      5
5  baz        B      6

pandas.melt也可以不用分组指标:

In [165]: pd.melt(df, value_vars=['A', 'B', 'C'])
Out[165]: variable  value
0        A      1
1        A      2
2        A      3
3        B      4
4        B      5
5        B      6
6        C      7
7        C      8
8        C      9In [166]: pd.melt(df, value_vars=['key', 'A', 'B'])
Out[166]: variable value
0      key   foo
1      key   bar
2      key   baz
3        A     1
4        A     2
5        A     3
6        B     4
7        B     5
8        B     6

相关文章:

数据规整:聚合、合并和重塑

目录一、层次化索引重排与分级排序根据级别汇总统计二、合并数据集数据库风格的DataFrame合并索引上的合并轴向连接合并重叠数据三、重塑和轴向旋转重塑层次化索引将“长格式”旋转为“宽格式”将“宽格式”旋转为“长格式”一、层次化索引 层次化索引(hierarchica…...

开心档之C++ 信号处理

C 信号处理 目录 C 信号处理 signal() 函数 实例 raise() 函数 实例 信号是由操作系统传给进程的中断,会提早终止一个程序。在 UNIX、LINUX、Mac OS X 或 Windows 系统上,可以通过按 CtrlC 产生中断。 有些信号不能被程序捕获,但是下表…...

ChatGPT惨遭围剿?多国封杀、近万人联名抵制……

最近,全世界燃起一股围剿ChatGPT的势头。由马斯克、图灵奖得主Bengio等千人联名的“暂停高级AI研发”的公开信,目前签名数量已上升至9000多人。除了业内大佬,欧盟各国和白宫也纷纷出手。 最早“动手”的是意大利,直接在全国上下封…...

SpringBoot监听器

1.寻找spring.factories配置文件对应的监听器,主要要写监听器的全路径名,不然反射会报错 SpringBoot底层是如何读取META-INF/spring.factories的配置的? 1.遍历所有jar下的META-INF/spring.factories配置文件 2.读取配置文件下的所有属性&a…...

【网络安全】SQL注入--报错注入

报错注入报错注入定义代码展示常用的报错语句1.获取数据库名称2.获取mysql账号密码3.获取表名4.获取字段名5.获取账号密码报错注入定义 报错注入:利用sql语句的不规范,获取相关sql提示信息 代码展示 常用的报错语句 select first_name, last_name FROM…...

APP隐私整改建议

1、违规收集个人信息 情形一: APP首次启动时,未有以弹窗形式明示个人信息保护政策。 改进建议: APP首次启动时,以弹窗等形式向用户明示个人信息保护政策。 情形二: 个人信息保护政策未有说明个人信息处理的目的、方…...

MySQL数据模型 and 通用语法 and 分类

关系型数据库 关系型数据库是由多张能互相连接的二维表组成的数据库。 优点: 1.都是使用表结构,格式一致,易于维护。 2.使用通用的SQL语言操作,使用方便,可用于复杂查询。 3.数据存储在磁盘中,安全。 …...

一款识别域名是否使用cdn的工具cdnChecker

cdnChecker 一款识别域名是否使用cdn的工具 https://github.com/alwaystest18/cdnChecker 背景 红队打点时经常会有收集子域名然后转成ip进而扩展ip段进行脆弱点寻找的需求,如果域名使用cdn,会导致收集错误的ip段,因此我们需要排除cdn来收…...

Ant Design Vue的汉化

Ant Design Vue的汉化 1. 引入依赖 import zhCN from "ant-design-vue/lib/locale-provider/zh_CN"; // 汉化 export default {data () {zhCN,} }2. 标签包裹需要汉化的组件 <a-config-provider :locale"zhCN"><a-table :row-selection"ro…...

spring cloud中实现接口广播请求到服务提供者

一、背景 假如现在有一台服务A&#xff0c;两台服务B&#xff0c;可以简化为如下图模型&#xff1a; 需求&#xff1a;一次请求服务A需要同时将请求广播打到两台服务B上。 二、实现方案 2.1 需要应用到两个类&#xff1a; 2.1.1&#xff1a;LoadBalancerClient package org…...

电机PID参数调节笔记

规则1 1&#xff09;降低比例增益P&#xff0c;可以获得较小的振动2&#xff09;有可能不需要调节I环和D环3&#xff09;提升比例增益P环可以增加灵敏度&#xff0c;但可能会出现不稳定的情况&#xff08;如振动&#xff09;4&#xff09;可以设定电机速度最大幅值&#xff0c…...

【深度学习】基于华为MindSpore的手写体图像识别实验

1 实验介绍 1.1 简介 Mnist手写体图像识别实验是深度学习入门经典实验。Mnist数据集包含60,000个用于训练的示例和10,000个用于测试的示例。这些数字已经过尺寸标准化并位于图像中心&#xff0c;图像是固定大小(28x28像素)&#xff0c;其值为0到255。为简单起见&#xff0c;每…...

Linux:内核调试之内核魔术键sysrq

在linux系统下&#xff0c;我们可能会遇到系统某个命令hang住的情况&#xff0c;通常情况下&#xff0c;我们会查看/proc/pid/wchan文件&#xff0c;看看进程处于什么状况&#xff0c;然后进一步查看系统日志或者使用strace跟踪命令执行时的系统调用等等方法来分析问题。我们知…...

Python import导包快速入门

import 和 from import 在 Python 中&#xff0c;使用 import 语句可以将其他 Python 模块或包中的代码引入到当前模块中&#xff0c;以供使用。通常情况下&#xff0c;我们可以使用以下语法将整个模块导入到当前命名空间中&#xff1a; import module_name其中&#xff0c;m…...

ChatGPT这么火,我们能怎么办?

今天打开百度&#xff0c;看到这样一条热搜高居榜二&#xff1a;B站UP主发起停更潮&#xff0c;然后点进去了解一看&#xff0c;大体是因为最近AI创作太火&#xff0c;对高质量原创形成了巨大冲击&#xff01;记得之前看过一位UP主的分享&#xff0c;说B站UP主的年收入大体约等…...

HashMap底层原理

文章目录1. 基本概念2. HashMap 的底层数据结构3. HashMap 的 put 方法流程4. 怎么计算节点存储的下标5. Hash 冲突1&#xff09;概念2&#xff09;解决 hash 冲突的办法开放地址法再哈希法链地址法建立公共溢出区6. HashMap 的扩容机制1&#xff09;扩容时涉及到的几个属性2&a…...

卡顿优化小结

卡顿的本质 卡顿的本质是因为一次垂直同步信号来的时候&#xff0c;当前帧要显示的图像数据还没准备好&#xff0c;只能等待16ms下一次垂直同步信号来时才能更新画面&#xff0c;在这段时间里显示器只能一直停留在上一帧的画面&#xff0c;如果跳过的帧数过多&#xff0c;就会…...

springboot前端ajax 04 关于后台传的时间和状态在前端的转换

修改状态及时间格式 在jsp中&#xff0c;时间显式&#xff1a; 只需要把json的时间部分改为用Date对象来显示就好了。 <td>new Date(jsonObj[i].startTime).toLocaleString()</td> <td>new Date(jsonObj[i].endTime).toLocaleString()</td> 状态对象…...

解决Windows微信和 PowerToys 的键盘管理器冲突

Windows开机之后PowerToys能正常使用, 但是打开微信之后设置好的快捷键映射就全部失效了 打开微信 -> 左下角三条杠 -> 设置 -> 快捷键 首先我把微信的快捷键全部清空了,发现还是没用 然后发现了设置里默认勾选了检测快捷键,我在想程序肯定是一直在后台检测,而powerTo…...

组会时间的工作

1. 党支部活动 看看组织生活记录本写完了没有 2. 论文翻译...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...