Redis(主从复制、哨兵模式、集群)概述及部署
目录
1.redis高可用
2.redis持久化
1.Redis 提供两种方式进行持久化:
2.RDB 持久化
3.AOF持久化
4.RDB和AOF的优缺点
5.Redis 性能管理
3.redis主从复制
1.Redis主从复制的概念
2.Redis主从复制的作用
3.Redis主从复制的搭建
4.redis哨兵模式
1.哨兵模式原理:
2.哨兵模式的作用
3.故障转移机制
4.哨兵模式的搭建
5.Redis 集群模式
1.集群的作用
2.Redis集群的数据分片
3.Redis 集群部署
1.redis高可用
在web服务器中高可用是指: 服务器可以正常访问的时间,衡量的标准是: 在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。但是在redis语境中,高可用的含义似乎要广泛一些,除了保证提供正常的服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。
在redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和cluster集群,下面分别说明他们的作用,以及解决了什么样的问题。
1.持久化: 持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在磁盘,保证数据不会因为进程的退出而丢失。
2.主从复制: 主从复制是高可用redis的基础,哨兵和集群都是在主从复制基础上实现的高可用。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障修复。
缺陷: 故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
3.哨兵: 在主从复制的基础上,哨兵实现了自动化的故障恢复。
4.Cluster集群: 通过集群,redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。
2.redis持久化
持久化的功能:
redis是内存数据库,数据都是存储在内存中,为了避免服务器服务器断电等导致redis进程异常退出后数据的永久丢失,需要定期将redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。
1.Redis 提供两种方式进行持久化:
RDB 持久化:原理是将 Reids在内存中的数据库记录定时保存到磁盘上。
AOF 持久化(append only file):原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。
由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地。
2.RDB 持久化
RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。
1.触发条件
RDB持久化的触发分为手动触发和自动触发两种。
(1)手动触发
save命令和bgsave命令都可以生成RDB文件。
save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。(2)自动触发
在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。save m n
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。
vim /etc/redis/6379.conf
--219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
--254行--指定RDB文件名
dbfilename dump.rdb
--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
--242行--是否开启RDB文件压缩
rdbcompression yes##其他自动触发机制##
除了save m n 以外,还有一些其他情况会触发bgsave:
●在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。
2.执行流程
(1)Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑: 两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3)父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5)子进程发送信号给父进程表示完成,父进程更新统计信息。
3.启动时加载
RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时, 才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。
3.AOF持久化
RDB持久化 是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录;
当Redis重启时 再次执行AOF文件中的命令来恢复数据。
与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。
1. 开启AOF
Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:
vim /etc/redis/6379.conf
--700行--修改,开启AOF
appendonly yes
--704行--指定AOF文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes/etc/init.d/redis_6379 restart
1.执行流程
由于需要记录Redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程。
AOF的执行流程包括:
命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
文件重写(rewrite):定期重写AOF文件,达到压缩的目的。
(1)命令追加(append)
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
命令追加的格式是: Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。
(2)文件写入(write)和文件同步(sync)
Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。
AOF缓存区的同步文件策略存在三种同步方式,它们分别是:
vim /etc/redis/6379.conf
–729–
appendfsync always[一直触发]: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。appendfsync no【不触发】: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
appendfsync everysec【每秒触发】: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。
(3)文件重写(rewrite)
随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。
文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!
关于文件重写需要注意的另一点是: 对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。
文件重写之所以能够压缩AOF文件,原因在于:
过期的数据不再写入文件
无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、
有些数据被删除了(set myset v1, del myset)等。
多条命令可以合并为一个:如sadd myset v1, sadd myset v2,
sadd myset v3可以合并为sadd myset v1 v2 v3。
通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。
(4)文件重写的触发,分为手动触发和自动触发:
手动触发: 直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
自动触发: 通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。
vim /etc/redis/6379.conf
auto-aof-rewrite-percentage 100 : 当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作。
auto-aof-rewrite-min-size 64mb : 当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF。
关于文件重写的流程,有两点需要特别注意:
(1)重写由父进程fork子进程进行;
(2)重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。
(5)文件重写的流程如下:
(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,
如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”
信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,
并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。
由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,
防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,
Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,
具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,
这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。
(6)启动时加载
当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。
4.RDB和AOF的优缺点
1.RDB持久化
优点: RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。
当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。
缺点: RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。
此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。
对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力。
2.AOF持久化
与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大。对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题。
AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的IO压力问题。相对来说,由于AOF向硬盘中写数据的频率更高,因此对 Redis主进程性能的影响会更大。
5.Redis 性能管理
1.查看Redis内存使用
192.168.9.236:7001> info memory
2.内存碎片率
操作系统分配的内存值 used_memory_rss 除以 Redis 使用的内存总量used_memory 计算得出。 内存值used_memory_rss 表示该进程所占物理内存的大小,即为操作系统分配给 Redis 实例的内存大小。
除了用户定义的数据和内部开销以外,used_memory_rss 指标还包含了内存碎片的开销,内存碎片 是由操作系统低效的分配/回收物理内存导致的(不连续的物理内存分配)。
举例来说: Redis 需要分配连续内存块来存储 1G 的数据集。如果物理内存上没有超过 1G 的连续内存块, 那操作系统就不得不使用多个不连续的小内存块来分配并存储这 1G 数据,该操作就会导致内存碎片的产生。
跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:
●内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。
●内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。
需要在redis-cli工具上输入shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,
再重启服务器。
●内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。
需要增加可用物理内存或减少 Redis 内存占用。
3.内存使用率
redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。
避免内存交换发生的方法:
(1)针对缓存数据大小选择安装 Redis 实例
(2)尽可能的使用Hash数据结构存储
(3)设置key的过期时间
4.内回收key
内存清理策略,保证合理分配redis有限的内存资源。
当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。
配置文件中修改 maxmemory-policy 属性值:
vim /etc/redis/6379.conf
--598--
maxmemory-policy noenviction
●volatile-lru:使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,
针对设置了TTL的key)
●volatile-ttl:从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)
●volatile-random:从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)
●allkeys-lru:使用LRU算法从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)
●allkeys-random:从数据集合中任意选择数据淘汰(随机移除key)
●noenviction:禁止淘汰数据(不删除直到写满时报错)
3.redis主从复制
1.Redis主从复制的概念
主从复制,是指:**将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。
2.Redis主从复制的作用
1.数据冗余: 主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
2.故障恢复: 当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
3.负载均衡: 在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
4.高可用基石: 除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。
1.Redis主从复制的流程
(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
(3)后台进程完成缓存操作之后,Maste机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Mater同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。
主从复制、SYNC同步:
1.从Redis服务器启动,向主服务器发送SYNC同步数据请求
2.主redis会fork一个子进程,然后产生出一个RDB文件(完全备份的过程)
客户端还在持续写入redis
3.RDB文件持久化完后,主Redis会将RDB文件和缓存起来的命令推送给服务器
4.复制、推送完成后,主Redis会持续同步操作命令,利用AOF增备的部分做持久化功能
5.在下一台从Redis接入主从复制的集群之前,会持续利用AOF的方式同步数据给从Redis
3.Redis主从复制的搭建
1.环境配置/安装包
安装包链接:redis-5.0.7.tar.gz
主机 | 操作系统 | IP地址 | 软件 / 安装包 / 工具 |
Master | CentOS7 | 192.168.156.10 | redis-5.0.7.tar.gz |
Slave1 | CentOS7 | 192.168.156.110 | redis-5.0.7.tar.gz |
Slave2 | CentOS7 | 192.168.156.120 | redis-5.0.7.tar.gz |
2.安装Redis(所有主机)
systemctl stop firewalld
setenforce 0yum install -y gcc gcc-c++ maketar zxvf redis-5.0.7.tar.gz -C /opt/cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis installcd /opt/redis-5.0.7/utils
./install_server.sh回车四次,下一步需要手动输入Please select the redis executable path [] /usr/local/redis/bin/redis-server ln -s /usr/local/redis/bin/* /usr/local/bin/
(1)关闭防火墙
(2)安装软件包
(3)将redis-5.0.7.tar.gz 压缩包上传到/opt 目录中并解压安装包
(4)编译安装
(5)执行软件包提供的 install_server.sh 脚本文件设置Redis服务所需要的相关配置文件
(6)把redis的可执行程序文件放入路径环境变量的目录中便于系统识别
3. 修改Master节点Redis配置文件(192.168.156.10)
vim /etc/redis/6379.conf
bind 0.0.0.0 #70行,修改bind 项,0.0.0.0监听所有网段
daemonize yes #137行,开启守护进程
logfile /var/log/redis_6379.log #172行,指定日志文件目录
dir /var/lib/redis/6379 #264行,指定工作目录
appendonly yes #700行,开启AOF持久化功能/etc/init.d/redis_6379 restart
4.修改Slave节点Redis配置文件(192.168.156.110和120)
vim /etc/redis/6379.conf
bind 0.0.0.0 #70行,修改bind 项,0.0.0.0监听所有网卡
daemonize yes #137行,开启守护进程
logfile /var/log/redis_6379.log #172行,指定日志文件目录
dir /var/lib/redis/6379 #264行,指定工作目录
replicaof 192.168.156.10 6379 #288行,指定要同步的Master节点IP和端口
appendonly yes #700行,开启AOF持久化功能/etc/init.d/redis_6379 restart
5.验证主从效果
(1)在Master节点上看日志
tail -f /var/log/redis_6379.log
(2)在Master节点上验证从节点
redis-cli info replication
# Replication
role:master
connected_slaves:2
slave0:ip=192.168.156.110,port=6379,state=online,offset=476,lag=1
slave1:ip=192.168.156.120,port=6379,state=online,offset=476,lag=1
4.redis哨兵模式
主从切换技术的方法是: 当服务器宕机后,需要手动一台从机换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务器不可用。为了解决主从复制的缺点,就有了哨兵机制。
哨兵的核心功能: 在主从复制的基础上,哨兵引入了主节点的自动故障转移。
1.哨兵模式原理:
哨兵(sentinel): 是一个分布式系统,用于 对主从结构中的每台服务器进行监控,当出现 故障时,通过投票机制选择新的master并将所有slave连接到新的master。所以整个运行哨兵的集群的数量不得少于三个节点。(哨兵必须是奇数)
2.哨兵模式的作用
(1)监控: 哨兵会不断地检测主节点和从节点是否运行正常。
(2)自动故障转移: 当主节点不能正常工作时,哨兵会开始自动故障转移操作,她会将失效主节点的其中一个从节点升级为新的主节点,并让其他从节点改为新的主节点。
(3)通知(提醒): 哨兵可以将故障转移的结果发送给客户端。
(4)哨兵结构由两部分组成: 哨兵节点和数据节点
哨兵节点:哨兵系统由一个或者多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
数据节点:主节点和从节点都是数据节点。
3.故障转移机制
1.由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会向主节点、从节点以及它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过一半哨兵节点认为该主节点主观下线了,这样就是客观下线了。
2.当主节点出现故障时, 此时哨兵节点会通过raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知,所以整个运行哨兵的集群的数量不得少于3个节点。
3.由leader哨兵节点执行故障转移,过程如下:
(1)将某一个从节点升级为新的主节点,让其他从节点指向新的主节点;
(2)若原主节点恢复也变成从节点,并指向新的主节点
(3)通知客户端主节点已经更换。
需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障时,被哨兵主观线下后,不会再有后续的客观下线和故障转移操作。
4.故障转移: 就相当于一个黑帮社会,里面会有几个分社老大,然后有一个最大的老大,定期去最大的老大那里开会,如果最大的老大犯了错被开了,由其余的分老大代替了,那么即使后期这个原本的最大的老大想恢复原身份,不能够直接恢复,也是需要选举的。
主节点的选举:
1.过滤掉不健康的(已经下线的),没有回复哨兵ping响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大,也就是复制最完美的从节点。
哨兵的启动依赖于主从模式,所以必须把主从模式安装好的情况下再去做哨兵模式。
4.哨兵模式的搭建
1.环境配置
基于主从复制已搭建完成
主机 | 操作系统 | IP地址 | 软件 / 安装包 / 工具 |
Master | CentOS7 | 192.168.156.10 | redis-5.0.7.tar.gz |
Slave1 | CentOS7 | 192.168.156.110 | redis-5.0.7.tar.gz |
Slave2 | CentOS7 | 192.168.156.120 | redis-5.0.7.tar.gz |
2.修改 Redis 配置文件(所有节点操作)
systemctl stop firewalld
setenforce 0vim /opt/redis-5.0.7/sentinel.conf
protected-mode no #17行,关闭保护模式
port 26379 #21行,Redis哨兵默认的监听端口
daemonize yes #26行,指定sentinel为后台启动
logfile "/var/log/sentinel.log" #36行,指定日志存放路径
dir "/var/lib/redis/6379" #65行,指定数据库存放路径
sentinel monitor mymaster 192.168.156.10 6379 2 #84行,修改 指定该哨兵节点监控192.168.156.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
sentinel down-after-milliseconds mymaster 30000 #113行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000 #146行,故障节点的最大超时时间为180000(180秒)
3.启动哨兵模式
先启master,再启slave
cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &
注意!先启动主服务器,再启动从服务器
4.故障模拟
查看redis-server进程号
杀死Master节点上redis-server的进程号
5.验证结果
tail -f /var/log/sentinel.log
redis-cli -p 26379 INFO Sentinel
5.Redis 集群模式
集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。
集群由多个节点(Node)组成,Redis的数据分布在这些节点中。
集群中的节点分为主节点和从节点: 只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。
1.集群的作用
(1)数据分区: 数据分区(或称数据分片)是集群最核心的功能。
集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。
(2)高可用: 集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。
2.Redis集群的数据分片
(1)Redis集群引入了哈希槽的概念;
(2)Redis集群有16384个哈希槽(编号0-16383);
(3)集群的每个节点负责一部分哈希槽;
(4)每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作。
#以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽
#Redis集群的主从复制模型
集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用
3.Redis 集群部署
1.环境准备
redis的集群一般需要**6个节点,3主3从**。 方便起见, 这里所有节点在3台服务器上模拟,每台主机上设置一主一备,以IP地址和端口进行区分:
(1)三个主节点端口号:6001,6002,6003
(2)对应的从节点端口号:7001,7002,7003
服务器类型 | 系统和IP地址 | 需要安装的组件 | 节点端口 |
Master 1 | CentOS7.4(64位) 192.168.156.10 | redis-5.0.7.tar.gz | 6001 |
Slave 1 | CentOS7.4(64位) 192.168.156.10 | redis-5.0.7.tar.gz | 7001 |
Master 2 | CentOS7.4(64位) 192.168.156.110 | redis-5.0.7.tar.gz | 6002 |
Slave 2 | CentOS7.4(64位) 192.168.156.110 | redis-5.0.7.tar.gz | 7002 |
Master 3 | CentOS7.4(64位) 192.168.156.120 | redis-5.0.7.tar.gz | 6003 |
Slave 3 | CentOS7.4(64位) 192.168.156.120 | redis-5.0.7.tar.gz | 7003 |
(3)修改主机名
2.创建目录复制配置文件到对应的节点上
(1)第一台主机:192.168.156.10
cd /etc/redis/
mkdir -p redis-cluster/redis6001
mkdir -p redis-cluster/redis7001
cp /opt/redis-5.0.7/redis.conf /etc/redis/redis-cluster/redis6001/
cp /opt/redis-5.0.7/src/redis-cli /opt/redis-5.0.7/src/redis-server /etc/redis/redis-cluster/redis6001/
cp /opt/redis-5.0.7/src/redis-cli /opt/redis-5.0.7/src/redis-server /etc/redis/redis-cluster/redis7001/
(2)第二台主机:192.168.156.110
cd /etc/redis/
mkdir -p redis-cluster/redis6002
mkdir -p redis-cluster/redis7002
cp /opt/redis-5.0.7/src/redis-cli /opt/redis-5.0.7/src/redis-server /etc/redis/redis-cluster/redis6002/
cp /opt/redis-5.0.7/src/redis-cli /opt/redis-5.0.7/src/redis-server /etc/redis/redis-cluster/redis7002/
(3)第三台主机:192.158.156.120
cd /etc/redis/
mkdir -p redis-cluster/redis6003
mkdir -p redis-cluster/redis7003
cp /opt/redis-5.0.7/src/redis-cli /opt/redis-5.0.7/src/redis-server /etc/redis/redis-cluster/redis6003/
cp /opt/redis-5.0.7/src/redis-cli /opt/redis-5.0.7/src/redis-server /etc/redis/redis-cluster/redis7003/
3.修改主配置文件,设置开启集群功能
(1)先在Master1上配置,然后将配置文件复制到其他节点服务器
#Master1配置如下,其他5个服务器的配置文件类似,注意6个端口都要不一样。
cd /etc/redis/redis-cluster/redis6001
vim redis.confbind 192.168.156.10 #69行,修改bind项,监听自己的IP
protected-mode no #88行,修改,关闭保护模式
port 6001 #92行,修改,redis监听端口
daemonize yes #136行,以独立进程启动
cluster-enabled yes #832行,取消注释,开启群集功能
cluster-config-file nodes-6379.conf #840行,取消注释,群集名称文件设置,无需修改
cluster-node-timeout 15000 #846行,取消注释群集超时时间设置
appendonly yes #699行,修改,开启AOF持久化
(2)在Master1节点上将配置文件到其他两台Master节点中
scp/etc/redis/redis-cluster/redis6001/redis.conf root@192.168.59.113:/etc/redis/redis-cluster/redis6002/redis.conf
scp/etc/redis/redis-cluster/redis6001/redis.conf root@192.168.59.114:/etc/redis/redis-cluster/redis6003/redis.conf
(3)将Master节点上的配置文件再复制到各自的从服务器中
将Master1的主配置文件复制到Slave1
Cp -p /etc/redis/redis-cluster/redis6001/redis.conf /etc/redis/redis-cluster/redis7001/redis.conf
#将Master2的主配置文件复制到Slave2
cp -p /etc/redis/redis-cluster/redis6002/redis.conf /etc/redis/redis-cluster/redis7002/redis.conf
#将Master3的主配置文件复制到Slave3
cp -p /etc/redis/redis-cluster/redis6003/redis.conf /etc/redis/redis-cluster/redis7003/redis.conf
(4)修改除Master1节点之外的所有服务器的监听地址及端口
#Slave1
vim /etc/redis/redis-cluster/redis7001/redis.conf
bind 192.168.156.10 #69行,修改bind项,监听自己的IP
port 7001 #92行,修改,redis监听端口
#Master2
vim /etc/redis/redis-cluster/redis6002/redis.conf
bind 192.168.156.110 #69行,修改bind项,监听自己的IP
port 6002 #92行,修改,redis监听端口
#Slave2
vim /etc/redis/redis-cluster/redis7002/redis.conf
bind 192.168.156.110 #69行,修改bind项,监听自己的IP
port 7002 #92行,修改,redis监听端口
#Master3
vim /etc/redis/redis-cluster/redis6003/redis.conf
bind 192.168.156.120 #69行,修改bind项,监听自己的IP
port 6003 #92行,修改,redis监听端口
#Slave3
vim /etc/redis/redis-cluster/redis7003/redis.conf
bind 192.168.156.120 #69行,修改bind项,监听自己的IP
port 7003 #92行,修改,redis监听端口
4.启动所有redis节点
cd /etc/redis/redis-cluster/redis6001/
redis-server redis.confcd /etc/redis/redis-cluster/redis7001/
redis-server redis.confcd /etc/redis/redis-cluster/redis6002/
redis-server redis.confcd /etc/redis/redis-cluster/redis7002/
redis-server redis.confcd /etc/redis/redis-cluster/redis6003/
redis-server redis.confcd /etc/redis/redis-cluster/redis7003/
redis-server redis.conf
5.启动集群
#前三台为Master,后三台为Slave,下面交互的时候需要输入yes 才可以创建。
redis-cli --cluster create 192.168.59.112:6001 192.168.59.113:6002 192.168.59.114:6003 192.168.59.112:7001 192.168.59.113:7002 192.168.59.114:7003 --cluster-replicas 1#-replicas 1 表示每个主节点有1个从节点。
6.测试集群
#加-c参数,节点之间就可以互相跳转
redis-cli -h 192.168.156.10 -p 6001 -c #查看节点的哈希槽编号范围
192.168.156.10:6001> cluster slots 192.168.156.10:6001> set hobby dance#查看键的槽编号
192.168.156.110:6002> cluster keyslot hobby
相关文章:

Redis(主从复制、哨兵模式、集群)概述及部署
目录 1.redis高可用 2.redis持久化 1.Redis 提供两种方式进行持久化: 2.RDB 持久化 3.AOF持久化 4.RDB和AOF的优缺点 5.Redis 性能管理 3.redis主从复制 1.Redis主从复制的概念 2.Redis主从复制的作用 3.Redis主从复制的搭建 4.redis哨兵模式 1.哨兵模式…...
windows下软件包安装工具之Scoop安装与使用
Scoop介绍 Scoop是Windows的命令行程序安装器。 Scoop从命令行安装程序,及其容易。它有如下特点: 消除权限弹出窗口隐藏 GUI 向导样式的安装程序防止安装大量程序的 PATH 污染避免安装和卸载程序的意外副作用自动查找并安装依赖项自行执行所有额外的设…...

九龙证券|人工智能+国产软件+智慧城市概念股火了,欧洲资管巨头大举抄底
近一周组织调研个股数量有130多只,迈瑞医疗成为调研组织数量最多的股票。 证券时报数据宝统计,近一周组织调研公司数量有130多家。从调研组织类型来看,证券公司调研相对最广泛,调研80多家公司。 迈瑞医疗获超500家组织调研 迈瑞…...

Nacos下载安装与配置(windows)
一、Nacos下载 官网地址:home (nacos.io) 点击前往Github,跳转至Github下载页面。 点击Tags,跳转至版本选择页面,此处选择2.2.0版本。 点击nacos-server-2.2.0.zip,进行下载。 二、Nacos安装 将下载的压缩包解压至需…...

QT学习笔记(语音识别项目 )
语音识别项目 我们知道 AI 智能音箱已经在我们生活中不少见,也许我们都玩过,智能化非常高,功能 强大,与我们平常玩的那种蓝牙音箱,Wifi 音箱有很大的区别,AI 智能在哪里呢?语音识别技 术和云端…...

Vulnhub:DC-4靶机
kali:192.168.111.111 靶机:192.168.111.251 信息收集 端口扫描 nmap -A -v -sV -T5 -p- --scripthttp-enum 192.168.111.251 访问目标网站发现需要登录 使用账号admin爆破出密码:happy 登陆后抓包执行反弹shell 提权 在/home/jim/backu…...
序列差分练习题--从模板到灵活运用
本篇包含6道序列差分练习题及题解,难度由模板到提高 语文成绩 题目背景 语文考试结束了,成绩还是一如既往地有问题。 题目描述 语文老师总是写错成绩,所以当她修改成绩的时候,总是累得不行。她总是要一遍遍地给某些同学增加分…...

Xshell 连接 Ubuntu 20.04
1 更改网络配置信息 修改/etc/netplan/01-network-manager-all.yaml文件信息 sudo gedit /etc/netplan/01-network-manager-all.yaml删除原有内容,替换为以下信息: 注意:addresses、gateway4 要根据个人虚拟机的实际情况修改 # Let Networ…...

【网口交换机:交换机KSZ9897学习-笔记-资料汇总-记录】
【网口交换机:交换机KSZ9897学习-笔记-资料汇总-记录】1、概述2、 自己的学习与摸索之路第一阶段:随意在网上查找相关资料第二阶段:针对性在网上资料第三阶段:测试并且使用开发板第四阶段:针对性使用工具进行测试。2、…...
linux信号量及其实例
概述 Linux信号量是用于进程间同步和互斥的一种通信机制。本质是计数器 它们通常用于控制对共享资源的访问,以确保只有一个进程可以同时访问该资源。以下是一个详细的教程和C语言代码示例,展示如何使用信号量进行进程间通信。 创建信号量 要使用信号量…...

Nomogram | 盘点一下绘制列线图的几个R包!~(一)
1写在前面 列线图,又称诺莫图(Nomogram),是一种用于预测模型的可视化工具,它可以将多个影响因素和结局事件的关系展示在同一平面上。🥳 列线图最早是由法国工程师Philbert Maurice dOcagne于1884年发明的&a…...

两个数组的交集(力扣刷题)
给定两个数组 nums1 和 nums2 ,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。 来源:力扣(LeetCode) 链接:https://leetcode.cn/problems/intersection-of-two-arrays 说…...

SonarQube 10.0 (macOS, Linux, Windows) - 清洁代码 (Clean Code)
请访问原文链接:https://sysin.org/blog/sonarqube-10/,查看最新版。原创作品,转载请保留出处。 作者主页:sysin.org Sonar Clean Code Industry leading solutions IDE | SonarLint Free IDE extension that provides on-the-f…...

怎么统一把文件名不需要部分批量替换掉
同事把文件传给我,我接在电脑上看发现文件名都是乱的,前面都加了一串挺长的数字,总之看起来很乱,顺序也跟着乱了,如何把红色框内部分删除掉呢? 上图就是我收到同事发我文件呢,你说要什么修改呢&…...
Vue3电商项目实战-结算支付 3【05-结算-收货地址-添加、06-结算-收货地址-修改、07-结算-提交订单】
文章目录05-结算-收货地址-添加06-结算-收货地址-修改07-结算-提交订单05-结算-收货地址-添加 目的:实现收货地址的添加。 大致步骤: 独立组件,准备一个对话框完成表单布局完成确认添加操作 落的代码: 1.独立组件,准…...

开心档之开发入门网-C++ 变量作用域
C 变量作用域 目录 C 变量作用域 局部变量 实例 全局变量 实例 实例 初始化局部变量和全局变量 作用域是程序的一个区域,一般来说有三个地方可以定义变量: 在函数或一个代码块内部声明的变量,称为局部变量。 在函数参数的定义中声明…...
蓝易云:linux怎么关闭防火墙详细教程
在Linux下关闭防火墙可以通过以下步骤实现: 1. 检查防火墙状态 首先需要检查当前系统的防火墙状态,可以使用以下命令: sudo systemctl status firewalld 如果防火墙当前正在运行,会显示出如下信息: ● firewalld.s…...
操作系统-用户进程
一、Makefile 这个 Makefile 要比之前的文件夹中的 Makefile 更加复杂,是因为之前的文件夹都是对操作系统特定部分的一个编译指导,所以基本上是实现的功能就是“对应的 C 文件和汇编文件编译成目标文件”这一个功能,最后合成一个整体。但是 …...
小驰私房菜_07_camx EIS使能
#小驰私房菜# #Qcom Cax# 本篇文章分下面几点展开: 1) camxoverridesettings.txt 中如何设置打开eis开关? 2)app打开eis,需要设置哪些request? 3) eisv2.0、eisv3.0分别是什么时候采用? 4)相关日志分析,日志上如何确认eis已经使能? 一、 camxoverridesettings.txt …...
互联网快速发展,孕育着新技术、新模式的全新时代正在到来
除了新时代的红利之外,在马云的回归之下,我更多地看到的是,人们信心的回归。这样一种回归,并不仅仅只是局限于企业家本身,纵然是对于普通民众来讲,同样是一种信心的回归。时下,经济复苏的号角开…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...

springboot 日志类切面,接口成功记录日志,失败不记录
springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...