方向导数与梯度下降
文章目录
- 方向角与方向余弦
- 方向角
- 方向余弦
- 方向导数
- 定义
- 性质
- 梯度下降
梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。
方向角与方向余弦
方向角
向量(或有向直线)与坐标轴正向或基向量的交角称为向量的方向角。定义域为[0,π][0,\pi][0,π]。
方向余弦
{cosα=x∣r∣cosβ=y∣r∣cosγ=z∣r∣\begin{cases} \cos\alpha = \frac{x}{|r|}\\ \cos\beta = \frac{y}{|r|}\\ \cos\gamma = \frac{z}{|r|} \end{cases}⎩⎨⎧cosα=∣r∣xcosβ=∣r∣ycosγ=∣r∣z
且有cos2α+cos2β+cos2γ=1\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1cos2α+cos2β+cos2γ=1
方向导数
定义
给定标量函数f(x,y,z)f(x,y,z)f(x,y,z),和任意向量l⃗\vec{l}l,该向量与三个坐标轴的夹角分别为α\alphaα、β\betaβ、γ\gammaγ,从定义域中一定P0(x,y,z)P_0(x,y,z)P0(x,y,z)出发,沿着向量l⃗\vec{l}l方向移动距离Δs\Delta sΔs,到达点P1(x+Δscosα,y+Δscosβ,z+Δscosγ)P_1(x+\Delta s \cos\alpha,y+\Delta s \cos\beta,z+\Delta s \cos\gamma)P1(x+Δscosα,y+Δscosβ,z+Δscosγ),定义方向导数:
dfdl⃗=limΔs→0f(x+Δscosα,y+Δscosβ,z+Δscosγ)−f(x,y,z)Δs\frac{df}{d\vec{l}}=\lim_{\Delta s \to 0}\frac{f(x+\Delta s \cos\alpha,y+\Delta s \cos\beta,z+\Delta s \cos\gamma)-f(x,y,z)}{\Delta s}dldf=limΔs→0Δsf(x+Δscosα,y+Δscosβ,z+Δscosγ)−f(x,y,z)
代表函数fff在方向l⃗\vec{l}l的变化率。
性质
dfdl⃗=∂f∂xcosα+∂f∂ycosβ+∂f∂zcosγ=(∂f∂x,∂f∂y,∂f∂z)⋅(cosα,cosβ,cosγ)=∇f⋅n⃗=∣∇f∣cos⟨∇f,l⃗⟩\begin{aligned} \frac{df}{d\vec{l}} &=\frac{\partial f}{\partial x}\cos\alpha+\frac{\partial f}{\partial y}\cos\beta+\frac{\partial f}{\partial z}\cos\gamma \\ \\ &=(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})\cdot(\cos\alpha,\cos\beta,\cos\gamma)=\nabla f \cdot\vec{n}=|\nabla f|\cos\lang\nabla f,\vec{l}\rang \end{aligned}dldf=∂x∂fcosα+∂y∂fcosβ+∂z∂fcosγ=(∂x∂f,∂y∂f,∂z∂f)⋅(cosα,cosβ,cosγ)=∇f⋅n=∣∇f∣cos⟨∇f,l⟩
当l⃗\vec{l}l取fff的梯度方向时,cos⟨∇f,l⃗⟩=1\cos\lang\nabla f,\vec{l}\rang=1cos⟨∇f,l⟩=1,变化率绝对值最大且为正;当l⃗\vec{l}l取fff的负梯度方向时,cos⟨∇f,l⃗⟩=−1\cos\lang\nabla f,\vec{l}\rang=-1cos⟨∇f,l⟩=−1,变化率绝对值最大且为负。
梯度下降
应用场景:求损失函数的最小值。
梯度下降的具体算法实现过程是:
1、确定模型和损失函数;
2、参数初始化,包括:参数、算法终止条件和步长;
3、参数更新θj+1=θj−α∂J∂θj\theta_{j+1}=\theta_j - \alpha \frac{\partial J}{\partial\theta_j}θj+1=θj−α∂θj∂J
4、判断停止条件,若满足,则停止,若不满足,则继续更新。
相关文章:

方向导数与梯度下降
文章目录方向角与方向余弦方向角方向余弦方向导数定义性质梯度下降梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(…...

Java岗面试题--Java基础(日积月累,每日三题)
目录面试题一:Java中有哪些容器(集合类)?追问:Java中的容器,线程安全和线程不安全的分别有哪些?面试题二: HashMap 的实现原理/底层数据结构? JDK1.7 和 JDK1.8追问一&am…...

java基础—Volatile关键字详解
java基础—Volatile关键字详解 文章目录java基础—Volatile关键字详解并发编程的三大特性:volatile的作用是什么volatile如何保证有可见性volatile保证可见性在JMM层面原理volatile保证可见性在CPU层面原理可见性问题的例子volatile如何保证有序性单例模式使用volat…...
内存检测工具Sanitizers
Sanitizers介绍 Sanitizers 是谷歌开源的内存检测工具,包括AddressSanitizer、MemorySanitizer、ThreadSanitizer、LeakSanitizer。 Sanitizers是LLVM的一部分。 gcc4.8:支持Address和Thread Sanitizer。 gcc4.9:支持Leak Sanitizer和UBSani…...
Triton : OpenAI 开发的用于Gpu开发语言
Triton : OpenAI 开发的用于Gpu开发语言https://openai.com/blog/triton/1、介绍 https://openai.com/blog/triton/ 2、git地址 https://github.com/openai/triton 3、论文 http://www.eecs.harvard.edu/~htk/publication/2019-mapl-tillet-kung-cox.pdf SIMD : Single Inst…...

Python文件操作-代码案例
文章目录文件打开文件open写文件上下文管理器第三方库简单应用案例使用python生成二维码使用python操作excel程序员鼓励师学生管理系统文件 变量就在内存中,文件在硬盘中. 内存空间更小,访问速度快,成本贵,数据容易丢失,硬盘空间大,访问慢,偏移,持久化存储. \\在才是 \的含义…...

活动目录(Active Directory)管理,AD自动化
每个IT管理员几乎每天都在Active Directory管理中面临许多挑战,尤其是在管理Active Directory用户帐户方面。手动配置用户属性非常耗时、令人厌烦且容易出错,尤其是在大型、复杂的 Windows 网络中。Active Directory管理员和IT经理大多必须执行重复和世俗…...

Allegro如何使用Vertext命令修改丝印线段的形状操作指导
Allegro如何使用Vertext命令修改丝印线段的形状操作指导 在用Allegro画丝印线段的时候,如果画了一段不是自己需要形状的线段,无需删除重画,可以用Vertext命令直接编辑 如下图 修改前 修改后 具体操作如下 选择Edit...
Leetcode力扣秋招刷题路-0030
从0开始的秋招刷题路,记录下所刷每道题的题解,帮助自己回顾总结 30. 串联所有单词的子串 给定一个字符串 s 和一个字符串数组 words。 words 中所有字符串 长度相同。 s 中的 串联子串 是指一个包含 words 中所有字符串以任意顺序排列连接起来的子串。…...

基于Prometheus和k8s搭建监控系统
文章目录1、实验环境2、Prometheus介绍?3、Prometheus特点3.1 样本4、Prometheus组件介绍5、Prometheus和zabbix对比分析6、Prometheus的几种部署模式6.1 基本高可用模式6.2 基本高可用远程存储6.3 基本HA 远程存储 联邦集群方案7、Prometheus的四种数据类型7.1 C…...

类和对象(下)
类和对象(下)再谈构造函数构造函数体赋值初始化列表explicit关键字static成员静态成员的特性友元友元函数友元类成员函数做友元内部类匿名对象编译器的一些优化再谈构造函数 构造函数体赋值 在创建对象的时候编译器会调用构造函数给对象中的成员变量一…...
达梦数据库单机部署
一、安装前准备 1. 安装环境 操作系统:redhat7.9 达梦数据库版本:V8 内存:2G CPU:x86_64 2. 新建用户组和用户 groupadd dinstall useradd -g dinstall -m -d /home/dmdba -S /bin/bash dmdba passwd dmdba3. 配置参数 vi /etc/security/limits.conf #在末尾添加以下内…...
从零到一学习Flutter——(二)状态和路由
背景 前文提到了Widget的状态,在Flutter中一切都是Widget,那么由Widget组成的页面,会有很多复杂的父子关系,要想交互友好,则需要这些Widget进行通讯,也就是所谓的状态管理。 同时在了解了布局之后,我们会写出很多的页面,那么在这些页面切换,也是一个很重要的能力。 …...

TC358774XBG/TC358775XBG替代方案|CS5518替代TC358774XBG/TC358775XBG设计DSI转LVSD设计资料
TC358774XBG/TC358775XBG替代方案|CS5518替代TC358774XBG/TC358775XBG设计DSI转LVSD设计资料 TC358774XBG/TC358775XBG 芯片的主要功能是作为 DSI - LVDS 通信协议桥接,主芯片的视频数据可通过 DSI 链路流 出,以驱动兼容 LVDS 的显示板。换句话说&#x…...

Linux---Kernal与Shell讲解
目录 Shell简介 什么是Shell Shell分类 内核Kernal Shell简介 什么是Shell 我们首先需要知道一台完整的计算机是由硬件组成的,而人不可以直接与硬件交互,为了完成交互,进行了以下的操作 将硬件设备交由内核管理,给硬件套个内…...

Thiol-PEG-Acid,HS-PEG-COOH,巯基-聚乙二醇-羧基试剂供应
一:产品描述 1、名称 英文:HS-PEG-COOH,Thiol-PEG-Acid 中文:巯基-聚乙二醇-羧基 2、CAS编号:N/A 3、所属分类:Carboxylic acid PEG Thiol PEG 4、分子量:可定制,Thiol-聚乙二…...

数据结构与算法基础-学习-09-线性表之栈的理解、初始化顺序栈、判断顺序栈空、获取顺序栈长度的实现
一、个人理解栈是线性表的一种衍生,和之前的顺序表和链表在插入和删除元素上有较大差异,其他基本相同,栈是数据只能插入表的尾部(栈顶),删除数据时只能删除表的尾部(栈顶)数据&#…...

深入Kafka核心设计与实践原理读书笔记第二章
1 生产者 生产逻辑 配置生产者客户端参数及创建相应的生产者实例。构建待发送的消息。发送消息关闭实列 参数说明 bootstrap.servers :用来指定生产者客户端链接Kafka集群搜需要的broker地址清单,具体格式 host1:port1,host2:port2,可以设置一个或多…...

知乎kol投放怎么做?知乎kol资源从哪里找?
每个领域都有一些比较专业且具有话语权的大V博主,他们推荐某个产品或是品牌就能对粉丝产生很深的影响力,影响用户消费决策。 互联网时代,每个热门的内容平台上都活跃着一大批kol博主,做kol投放具有很高的商业价值。 知乎内容社区…...

python设计模式-享元设计模式,抽象工厂设计模式,面向对象设计模式
享元设计模式 享元(flyweight)设计模式属于结构设计模式类别。 它提供了一种减少对象数的方法。 它包含各种有助于改进应用程序结构的功能。享元对象最重要的特性是不可变的。 这意味着一旦构建就不能修改它们。 该模式使用HashMap来存储引用对象 如何实现享元(flyweight)设计…...

JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...