当前位置: 首页 > news >正文

【C++进阶】实现C++线程池

文章目录

    • 1. thread_pool.h
    • 2. main.cpp

1. thread_pool.h

#pragma once
#include <iostream>
#include <vector>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <functional>
#include <stdexcept>class ThreadPool
{
public:ThreadPool(size_t);template <class F, class... Args>auto enqueue(F &&f, Args &&...args)-> std::future<typename std::result_of<F(Args...)>::type>;~ThreadPool();private:// 线程池中的工作线程std::vector<std::thread> workers;// 任务队列std::queue<std::function<void()>> tasks;// 同步相关std::mutex queue_mutex;std::condition_variable condition;bool stop;
};
// 构造函数,创建线程并将其放入工作线程中
ThreadPool::ThreadPool(size_t threads): stop(false)
{for (size_t i = 0; i < threads; ++i)workers.emplace_back([this]{for (;;){std::function<void()> task;{std::unique_lock<std::mutex> lock(this->queue_mutex);this->condition.wait(lock,[this]{ return this->stop || !this->tasks.empty(); });if (this->stop && this->tasks.empty())return;task = std::move(this->tasks.front());this->tasks.pop();}task();}});
}
template <class F, class... Args>
auto ThreadPool::enqueue(F &&f, Args &&...args)-> std::future<typename std::result_of<F(Args...)>::type>
{using return_type = typename std::result_of<F(Args...)>::type;auto task = std::make_shared<std::packaged_task<return_type()>>(std::bind(std::forward<F>(f), std::forward<Args>(args)...));std::future<return_type> res = task->get_future();{std::unique_lock<std::mutex> lock(queue_mutex);if (stop)throw std::runtime_error("enqueue on stopped ThreadPool");tasks.emplace([task](){ (*task)(); });}condition.notify_one();return res;
}
// 线程池析构函数,设置停止标志,并等待所有线程完成任务
ThreadPool::~ThreadPool()
{{std::unique_lock<std::mutex> lock(queue_mutex);stop = true;}condition.notify_all();for (std::thread &worker : workers)worker.join();
}
  • 定义了一个名为ThreadPool的类,它包含以下成员:
    • workers:一个std::vector,用于存储线程池中的工作线程
    • tasks:一个std::queue,用于存储待执行的任务
    • queue_mutex:一个互斥锁,用于同步任务队列的访问
    • condition:一个条件变量,用于在添加新任务时唤醒工作线程
    • stop:一个布尔值,表示线程池是否应停止接受新任务并等待所有线程完成后终止。
  • ThreadPool类的构造函数接受一个size_t类型的参数,表示线程池中工作线程的数量。在构造函数中,创建指定数量的工作线程,并在这些线程中执行一个匿名函数,该匿名函数用于从任务队列中获取任务并执行。
  • enqueue成员函数模板用于向线程池添加新任务。它接受一个可调用对象f和其参数args,并将任务添加到任务队列中。enqueue函数返回一个std::future对象,表示任务的异步结果。
  • ThreadPool类的析构函数设置stop标志为true,通知所有工作线程停止接受新任务,并在所有任务完成后终止。然后,调用condition.notify_all()唤醒所有等待的工作线程,最后使用join()等待所有工作线程完成。

2. main.cpp

#include <iostream>
#include <vector>
#include <random>
#include <chrono>
#include "thread_pool.h"// 矩阵相乘的函数
void multiply(const std::vector<std::vector<int>> &A, const std::vector<std::vector<int>> &B, std::vector<std::vector<int>> &C, size_t row)
{size_t num_columns = B[0].size();size_t num_inner = A[0].size();for (size_t col = 0; col < num_columns; ++col){C[row][col] = 0;for (size_t inner = 0; inner < num_inner; ++inner){C[row][col] += A[row][inner] * B[inner][col];}}
}int main()
{const size_t matrix_size = 1000;std::vector<std::vector<int>> A(matrix_size, std::vector<int>(matrix_size));std::vector<std::vector<int>> B(matrix_size, std::vector<int>(matrix_size));std::vector<std::vector<int>> C(matrix_size, std::vector<int>(matrix_size));// 随机填充矩阵 A 和 Bstd::random_device rd;std::mt19937 gen(rd());std::uniform_int_distribution<> dis(1, 10);for (size_t i = 0; i < matrix_size; ++i){for (size_t j = 0; j < matrix_size; ++j){A[i][j] = dis(gen);B[i][j] = dis(gen);}}// 使用线程池进行矩阵相乘ThreadPool pool(20); // 根据自己处理器支持的线程数设定,越大耗时越短auto start = std::chrono::high_resolution_clock::now();std::vector<std::future<void>> results;for (size_t i = 0; i < matrix_size; ++i){results.emplace_back(pool.enqueue(multiply, std::cref(A), std::cref(B), std::ref(C), i));}for (auto &&result : results){result.get();}auto end = std::chrono::high_resolution_clock::now();std::chrono::duration<double> elapsed = end - start;std::cout << "Time elapsed: " << elapsed.count() << " seconds" << std::endl;return 0;
}
  • 定义了一个名为multiply的函数,用于计算矩阵相乘。这个函数接受两个输入矩阵AB,一个输出矩阵C以及一个行索引。在这个示例中,每个线程将负责计算矩阵C中的一行。
  • main函数中,首先定义了矩阵的大小(matrix_size),并创建了大小为matrix_size的二维矩阵A、B和C。
  • 使用随机数生成器填充矩阵A和B的元素。
  • 创建一个包含4个工作线程的线程池pool
  • 记录开始时间,然后将每行矩阵相乘的任务添加到线程池中。这里使用了std::crefstd::ref来传递矩阵的引用,以避免不必要的拷贝。
  • 使用results向量存储每个任务返回的std::future对象。
  • 遍历results向量,并调用每个std::future对象的get()方法,以确保所有任务都已完成。
  • 记录结束时间,计算并输出所用时间。

相关文章:

【C++进阶】实现C++线程池

文章目录1. thread_pool.h2. main.cpp1. thread_pool.h #pragma once #include <iostream> #include <vector> #include <queue> #include <thread> #include <mutex> #include <condition_variable> #include <future> #include &…...

Redis常用五种数据类型

一、Redis String字符串 1.简介 String类型在redis中最常见的一种类型 string类型是二制安全的&#xff0c;可以存放字符串、数值、json、图像数据 value存储最大数据量是512M 2. 常用命令 set < key>< value>&#xff1a;添加键值对 nx&#xff1a;当数据库中…...

C++ Primer第五版_第十一章习题答案(1~10)

文章目录练习11.1练习11.2练习11.3练习11.4练习11.5练习11.6练习11.7练习11.8练习11.9练习11.10练习11.1 描述map 和 vector 的不同。 map 是关联容器&#xff0c; vector 是顺序容器。 练习11.2 分别给出最适合使用 list、vector、deque、map以及set的例子。 list&#xff1a…...

GEE:使用LandTrendr进行森林变化检测详解

作者:_养乐多_ 本文介绍了一段用于地表变化监测的代码,该代码主要使用谷歌地球引擎(GEE)中的 Landsat 时间序列数据,采用了 Kennedy 等人(2010) 发布的 LandTrendr 算法,对植被指数进行分割,通过计算不同时间段内植被指数的变化来检测植被变化。 目录 一、加入矢量边界 …...

docker项目实施

鲲鹏916架构openEuler-arm64成功安装docker并跑通tomcat容器_闭关苦炼内功的技术博客_51CTO博客鲲鹏916架构openEuler-arm64成功安装docker并跑通tomcat容器&#xff0c;本文是基于之前这篇文章鲲鹏920架构arm64版本centos7安装docker下面开始先来看下系统版本卸载旧版本旧版本…...

springboot实现邮箱验证码功能

引言 邮箱验证码是一个常见的功能&#xff0c;常用于邮箱绑定、修改密码等操作上&#xff0c;这里我演示一下如何使用springboot实现验证码的发送功能&#xff1b; 这里用qq邮箱进行演示&#xff0c;其他都差不多&#xff1b; 准备工作 首先要在设置->账户中开启邮箱POP…...

Java 进阶(5) Java IO流

⼀、File类 概念&#xff1a;代表物理盘符中的⼀个⽂件或者⽂件夹。 常见方法&#xff1a; 方法名 描述 createNewFile() 创建⼀个新文件。 mkdir() 创建⼀个新⽬录。 delete() 删除⽂件或空⽬录。 exists() 判断File对象所对象所代表的对象是否存在。 getAbsolute…...

“终于我从字节离职了...“一个年薪40W的测试工程师的自白...

”我递上了我的辞职信&#xff0c;不是因为公司给的不多&#xff0c;也不是因为公司待我不好&#xff0c;但是我觉得&#xff0c;我每天看中我憔悴的面容&#xff0c;每天晚上拖着疲惫的身体躺在床上&#xff0c;我都不知道人生的意义&#xff0c;是赚钱吗&#xff1f;是为了更…...

设计模式之策略模式(C++)

作者&#xff1a;翟天保Steven 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 一、策略模式是什么&#xff1f; 策略模式是一种行为型的软件设计模式&#xff0c;针对某个行为&#xff0c;在不同的应用场景下&…...

从工厂普工到Python女程序员,聊聊这一路我是如何逆袭的?

我来聊聊我是如何从一名工厂普工&#xff0c;到国外程序员的过程&#xff0c;这里面充满了坎坷。过去我的工作是在工厂的流水线上&#xff0c;我负责检测电池的正负极。现如今我每天从早上6:20起床&#xff0c;6点四五十分出发到地铁站&#xff0c;7:40到公司。我会给自己准备一…...

全国青少年信息素养大赛2023年python·选做题模拟二卷

目录 打印真题文章进行做题: 全国青少年电子信息智能创新大赛 python选做题模拟二卷 一、单选题 1. numbers = [1, 11, 111, 9], 运行numbers.sort() 后,运行numbers.reverse() numbers会变成?( )...

分布式事务Seata原理

Seata 是一款开源的分布式事务解决方案&#xff0c;致力于提供高性能与简单易用的分布式事务服务&#xff0c;为用户提供了 AT、TCC、SAGA 和 XA 几种不同的事务模式。Seata AT模式是基于XA事务演进而来&#xff0c;需要数据库支持。AT 模式的特点就是对业务无入侵式&#xff0…...

用ChatGPT怎么赚钱?普通人用这5个方法也能赚到生活费

ChatGPT在互联网火得一塌糊涂&#xff0c;因为它可以帮很多人解决问题。比如&#xff1a;帮编辑人员写文章&#xff0c;还可以替代程序员写代码&#xff0c;帮策划人员写文案策划等等。ChatGPT这么厉害&#xff0c;能否用它来赚钱呢&#xff1f;今天和大家分享用ChatGPT赚钱的5…...

( “树” 之 DFS) 110. 平衡二叉树 ——【Leetcode每日一题】

110. 平衡二叉树 给定一个二叉树&#xff0c;判断它是否是高度平衡的二叉树。 本题中&#xff0c;一棵高度平衡二叉树定义为&#xff1a; 一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] …...

nvm软件使用-同一个环境下控制多个不同node版本

1.使用场景 nvm是一个用于管理Node.js版本的工具&#xff0c;它可以让你在同一台机器上安装和切换不同的Node.js版本。使用nvm的好处有以下几点&#xff1a; 1.1.nvm可以让你轻松地测试你的代码在不同的Node.js版本下的兼容性和性能&#xff0c;避免因为版本差异导致的问题。…...

连续两个南航的研究生面试出了从来没出现过的问题,本科和研究生都是计算机专业的,竟然说static是不可更改的。

最近面试人数有点多&#xff0c;面试有点频繁&#xff0c;因此发现了一些学生普遍会发生的错误&#xff0c;可以说是很离谱。 因为做了十多年的面试官&#xff0c;无论是大中小厂的面试&#xff0c;还是社招、校招。 从来没有遇到过这样的情况&#xff0c;而且发生在两个南航…...

How to install nacos/nacos-server:v2.1.2-slim with docker

今天给大家介绍一下如何基于Docker的nacos/nacos-server:v2.1.2-slim镜像安装nacos 1、Data Source 我们需要从nacos的github官网下载nacos 2.12发布包 nacos-server-2.1.2.tar.gznacos-server-2.1.2.zip 这里以nacos-server-2.1.2.tar.gz为例来介绍&#xff0c;解压后我们…...

Rust社区引发舆论危机,问题到底出在哪儿?

围绕开源的法律问题&#xff0c;讨论焦点往往集中在开源许可证、软件著作权等方面&#xff0c;商标的讨论却极少引人关注。事实上&#xff0c;关于开源软件以及开源软件的衍生产品的商标使用情况往往处于某种灰色地带。 最近&#xff0c;Rust基金会正在就更新的商标政策征求反馈…...

C++算法恢复训练之归并排序

归并排序&#xff08;Merge Sort&#xff09;是一种基于分治思想的排序算法&#xff0c;它将待排序数组分成两个子数组&#xff0c;然后对这两个子数组分别进行排序&#xff0c;最后将两个已排序的子数组合并成一个有序数组。归并排序是一种稳定的排序算法&#xff0c;具体体现…...

使用Process Explorer和Clumsy工具定位软件高CPU占用问题

目录 1、问题描述 2、使用Process Explorer初步找到CPU占用高的原因 3、使用Clumsy工具在公司内网环境复现了问题...

为何巴菲特和马斯克站在了一起?

股神巴菲特虽然非常传奇&#xff0c;但是马斯克对其并不感冒。马斯克曾经在一档电视节目中表示&#xff0c;实业才是王道&#xff0c;埋怨金融业抢走太多人才和精英&#xff0c;暗指巴菲特为年轻人做了错误示范。当然&#xff0c;巴菲特的投资非常厉害&#xff0c;但也有失手的…...

企业数字化转型全是坑?这几篇数字化转型成功案例,减少70%损失

这篇给大家整理了200企业数字化转型案例合集&#xff0c;涵盖了制造、建筑、教育、零售、互联网等10行业的大中小型企业数字化转型思路&#xff0c;希望对大家有所帮助。 案例全部整合在这篇文章中&#xff0c;点击即可查看>>数字化干货资料合集&#xff01; 01 首先&…...

13.Java面向对象----嵌套类

Java面向对象—嵌套类、内部类、匿名类 一、static静态 在《Java编程思想》有这样一段话&#xff1a;   “static方法就是没有this的方法。在static方法内部不能调用非静态方法&#xff0c;反过来是可以的。而且可以在没有创建任何对象的前提下&#xff0c;仅仅通过类本身来…...

Redis数据迁移过程,使用jedis客户端发送命令,需要注意string和byte类型的命令,如果使用的转换字符编码不一致,会导致丢数据

1.了解String与byte之间存在的字符编码映射规则&#xff08;java为例&#xff09; string与byte来回转换&#xff0c;需要指定一样字符编码规则 详细原因请参考&#xff1a;关于Java中bytes到String的转换-阿里云开发者社区 简单来说 &#xff08;1&#xff09;string和by…...

第六章 IA-32指令类型

IA-32指令类型1、传送指令1.1、常用传送指令1.1.1、通用数据传送指令1.2、传送指令执行过程2、定点算术运算指令2.1、常用定点运算指令2.2、加法运算的底层实现举例2.3、加法指令和乘法指令举例3、按位运算指令3.1、逻辑运算和移位运算3.2、按位运算指令举例4、控制转移指令4.1…...

基于BenchmarkSQL的Oracle数据库tpcc性能测试

基于BenchmarkSQL的Oracle数据库tpcc性能测试安装BenchmarkSQL及其依赖安装软件依赖编译BenchmarkSQLBenchmarkSQL props文件配置数据库用户配置BenchmarkSQL压测装载测试数据TPC-C压测&#xff08;固定事务数量&#xff09;TPC-C压测&#xff08;固定时长&#xff09;生成测试…...

Dapr和Rainbond集成,实现云原生BaaS和模块化微服务开发

背景 Dapr 是一个开源的分布式应用运行时&#xff0c;帮助开发者构建松耦合的分布式应用程序&#xff0c;具有良好的可扩展性和可维护性。Rainbond 是一款企业级的云原生应用管理平台&#xff0c;提供了丰富的功能和工具&#xff0c;方便开发者管理和部署应用。Rainbond 和 Da…...

全国青少年信息素养大赛2023年python·选做题模拟五卷

目录 下载打印文档做题: 全国青少年电子信息智能创新大赛 python选做题模拟五卷 一、单选题 1. 对于数列3,8,11,15,17,19,25,30,44,采用“二分查找”法查找8,需要查找多少次?( ) A、5...

itop-3568开发板驱动学习笔记(18)tasklet 机制

《【北京迅为】itop-3568开发板驱动开发指南.pdf》 学习笔记 文章目录tasklet 简介tasklet 结构体tasklet 初始化使能 tasklet失能 tasklettasklet 调度函数tasklet 取消调度函数tasklet 实验tasklet 简介 Tasklets 机制是linux中断处理机制中的软中断延迟机制。在linux中存在着…...

全国青少年电子信息智能创新大赛(复赛)python·模拟二卷

目录 编程题一 答案解析: 打印题目下载做题: 全国青少年电子信息智能创新大赛(复赛)python模拟二卷 编程题一 第一题:描述 输入两个整数,比较它们的大小。 输入 一行,包含两个整数x和y,中间用单个空格隔开。 0<= x<2^32,-2^31 <= y<2^31。 输出...