当前位置: 首页 > news >正文

【id:45】【20分】A. Equation(类与对象+构造)

题目描述

建立一个类Equation,表达方程ax2+bx+c=0。类中至少包含以下方法:

1、无参构造(abc默认值为1.0、1.0、0)与有参构造函数,用于初始化a、b、c的值;

2、set方法,用于修改a、b、c的值

3、getRoot方法,求出方程的根。

一元二次方程的求根公式如下:

 

一元二次方程的求解分三种情况,如下:

输入

输入测试数据的组数t

第一组a、b、c

第二组a、b、c

输出

输出方程的根,结果到小数点后2位

在C++中,输出指定精度的参考代码如下:

#include <iostream>

#include <iomanip> //必须包含这个头文件

using namespace std;

void main( )

{ double a =3.14;

  cout<<fixed<<setprecision(3)<<a<<endl;  //输出小数点后3位


输入样例

3
2 4 2
2 2 2
2 8 2
 


输出样例

x1=x2=-1.00
x1=-0.50+0.87i x2=-0.50-0.87i
x1=-0.27 x2=-3.73
 


 

 

#include <iostream>
#include <iomanip> //必须包含这个头文件
#include <math.h>
using namespace std;class Eq
{
private:double a, b, c, x1, x2;
public:Eq() { a = 1; b = 1; c = 0; x1 = x2 = 0; };//初始void set(double x, double y, double z);//赋值void getRoot();//求根
};//赋值
void Eq::set(double x, double y, double z)
{a = x; b = y; c = z;//cout << a << b << c <<"        1" << endl;
}//Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a。当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a。
//求根
void Eq::getRoot() {double derta;derta = b * b - 4 * a * c;if (derta > 0){x1 = ((-b) + sqrt(derta)) / (2 * a);x2 = ((-b) - sqrt(derta)) / (2 * a);cout << "x1=" << fixed << setprecision(2) << x1<< " x2=" << fixed << setprecision(2) << x2 << endl;}if (derta == 0){x1 = ((-b) + sqrt(derta)) / (2 * a);cout << "x1=x2=" << fixed << setprecision(2) << x1 << endl;}if (derta < 0){double i1;x1 = (-b) / (2 * a);i1 = sqrt(-derta) / (2 * a);cout << "x1=" << fixed << setprecision(2) << x1 << "+" << fixed << setprecision(2) << i1 << "i "<< "x2=" << fixed << setprecision(2) << x1 << "-" << fixed << setprecision(2) << i1 << 'i' << endl;}
}int main()
{int t;cin >> t;for (int i = 0; i < t; i++){Eq* a = new Eq[t];//动态数组double x, y, z;cin >> x >> y >> z;a[i].set(x, y, z);//传入数字进去a[i].getRoot();}
}

相关文章:

【id:45】【20分】A. Equation(类与对象+构造)

题目描述 建立一个类Equation&#xff0c;表达方程ax2bxc0。类中至少包含以下方法&#xff1a; 1、无参构造&#xff08;abc默认值为1.0、1.0、0&#xff09;与有参构造函数&#xff0c;用于初始化a、b、c的值&#xff1b; 2、set方法&#xff0c;用于修改a、b、c的值 3、ge…...

数据库事务

什么是事务 在数据库中&#xff0c;事务&#xff08;Transaction&#xff09;是指一组数据库操作&#xff0c;这些操作要么全部成功执行&#xff0c;要么全部失败回滚&#xff0c;是保证数据库操作一致性的基本单位。事务具有原子性&#xff08;Atomicity&#xff09;、一致性…...

Macbook(苹果电脑) VSCode 创建简单c++程序 配置C++开发环境

1.打开 Terminal 终端&#xff08;Command空格&#xff0c;输入Terminal&#xff09;。 1.1 输入如下指令&#xff0c;查看是否显示版本信息。 clang --version 1.2 如果出现版本信息&#xff0c;则跳过&#xff0c;否则输入 xcode-select --install 2. 为 VS Code 安装插件 …...

如何使用 Matlab 构建深度学习模型

深度学习已经成为了AI领域的热门话题&#xff0c;相信很多人都想学习如何构建深度学习模型&#xff0c;那么&#xff0c;我们就一起来看看如何使用Matlab构建深度学习模型。 首先&#xff0c;我们需要准备好Matlab的环境。Matlab是一款非常强大的数学计算软件&#xff0c;它提…...

PDF怎么转CAD文件?(免费!高效转换方法汇总)

一般而言&#xff0c;PDF图纸是不能修改的。若需修改&#xff0c;则需将PDF转CAD&#xff0c;此时如何满足PDF转CAD的需求呢&#xff1f;今天&#xff0c;我将教你两种免费的PDF转CAD的方法&#xff0c;助力高效办公。 1.本地软件转换法 这是用本地软件转换方法&#xff0c;支…...

经历了野蛮生长之后,新科技或许已经抵达了全新的临界点

跳出仅仅只是以概念和营销的方式来定义元宇宙&#xff0c;真正找到元宇宙与现实商业之间的桥接&#xff0c;让元宇宙可以在真实实践上得到复现&#xff0c;才是保证元宇宙的发展可以进入到一个全新发展阶段的关键所在。归根到底&#xff0c;我们还是要找到元宇宙落地的正确的方…...

Segment Anything论文翻译,SAM模型,SAM论文,SAM论文翻译;一个用于图像分割的新任务、模型和数据集;SA-1B数据集

【论文翻译】- Segment Anything / Model / SAM论文 论文链接&#xff1a; https://arxiv.org/pdf/2304.02643.pdfhttps://ai.facebook.com/research/publications/segment-anything/ 代码连接&#xff1a;https://github.com/facebookresearch/segment-anything 论文翻译&…...

EMQX vs NanoMQ | 2023 MQTT Broker 对比

引言 EMQX 和 NanoMQ 都是由全球领先的开源物联网数据基础设施软件供应商 EMQ 开发的开源 MQTT Broker。 EMQX 是一个高度可扩展的大规模分布式 MQTT Broker&#xff0c;能够将百万级的物联网设备连接到云端。NanoMQ 则是专为物联网边缘场景设计的轻量级 Broker。 本文中我们…...

RabbitMQ实现消息的延迟推送或延迟发送

一、RabbitMQ是什么&#xff1f; 1.RabbitMQ简介 RabbitMQ是有erlang语言开发&#xff0c;基于AMQP&#xff08;Advanced Message Queue 高级消息队列协议&#xff09;协议实现的消息队列。 常见的消息队列有&#xff1a;RabbitMQ、Kafka 和 ActiveMQ 2.RabbitMQ的优点 Rab…...

解决python中import导入自己的包呈现灰色 无效的问题

打开File–> Setting—> 打开 Console下的Python Console&#xff0c;把选项&#xff08;Add source roots to PYTHONPAT&#xff09;点击勾选上。 右键点击需要导入的工作空间文件夹&#xff0c;找到Mark Directory as 选择Source Root。 另外&#xff0c;Python中的…...

消息中间件对比

1&#xff0c;常见消息中间件对比(后续逐个介绍) 比较项TubeMQKafkaPulsar数据时延非常低&#xff0c;10ms比较低&#xff0c;250ms非常低&#xff0c;10msTPS高&#xff0c;14W/s一般&#xff0c;10W/s高&#xff0c;14W/s (高性能场景)过滤消费支持服务端过滤和客户端过滤客…...

nodejs+vue 高校校园食堂餐品在线订购网

食堂作为学校的一个重要的部门&#xff0c;为学生提供了用餐的地点&#xff0c;学生可以在食堂享用丰富的餐品&#xff0c;建立一个在校订餐网站&#xff0c;帮助了学生提供一个用餐订餐的系统&#xff0c;也帮助了食堂提供了一个餐品展示的站点。 园的食堂作为一个窗口单位&a…...

SpringBoot【运维实用篇】---- SpringBoot程序的打包与运行

SpringBoot【运维实用篇】---- SpringBoot程序的打包与运行 程序打包程序运行SpringBoot程序打包失败处理命令行启动常见问题及解决方案 刚开始做开发学习的小伙伴可能在有一个知识上面有错误的认知&#xff0c;我们天天写程序是在Idea下写的&#xff0c;运行也是在Idea下运行的…...

10万字智慧政务数据中心平台建设方案

本资料来源公开网络&#xff0c;仅供个人学习&#xff0c;请勿商用&#xff0c;如有侵权请联系删除。 一、 项目建设内容 1. 基础支撑平台 基础支撑平台是云教育公共服务平台各子系统的公共运行环境&#xff0c;提供底层数据交换、集成服务以及统一身份认证和基础数据同步服…...

使用 TensorFlow 构建机器学习项目:1~5

原文&#xff1a;Building Machine Learning Projects with TensorFlow 协议&#xff1a;CC BY-NC-SA 4.0 译者&#xff1a;飞龙 本文来自【ApacheCN 深度学习 译文集】&#xff0c;采用译后编辑&#xff08;MTPE&#xff09;流程来尽可能提升效率。 不要担心自己的形象&#x…...

【store商城项目08】删除用户的收获地址

1.删除收获地址-持久层 1.1规划SQL语句 根据aid判断数据是否存在&#xff0c;根据返回的uid判断数据是否对应&#xff08;已开发&#xff09;根据aid删除的SQL delete from t_address where aid ?根据1中的SQL返回的对象判断是否为默认地址&#xff0c;若为默认地址&#…...

SpringBooot

目录 一、简介 1、使用原因 2、JavaConfig &#xff08;1&#xff09;Configuration注解 &#xff08;2&#xff09;Bean注解 &#xff08;3&#xff09;ImportResource注解 &#xff08;4&#xff09;PropertyResource注解 &#xff08;5&#xff09;案例 3、简介 4…...

测牛学堂:2023软件测试linux和shell脚本入门系列(shell的运算符)

shell中的注释 以# 开头的就是shell中的注释&#xff0c;不会被执行&#xff0c;是给编程的人看的。 shell中的运算符 shell中有很多运算符。 按照分类&#xff0c;可以分为算术运算符&#xff0c;关系运算符&#xff0c;布尔运算符&#xff0c;字符串运算符&#xff0c;文件…...

TensorFlow 2.0 快速入门指南:第三部分

原文&#xff1a;TensorFlow 2.0 Quick Start Guide 协议&#xff1a;CC BY-NC-SA 4.0 译者&#xff1a;飞龙 本文来自【ApacheCN 深度学习 译文集】&#xff0c;采用译后编辑&#xff08;MTPE&#xff09;流程来尽可能提升效率。 不要担心自己的形象&#xff0c;只关心如何实现…...

webpack介绍

webpack是一个静态资源打包工具 开发时&#xff0c;我们会使用框架&#xff08;Vue&#xff0c;React&#xff09;&#xff0c;ES6模块化语法&#xff0c;Less/Sass等css预处理器等语法进行开发。 这样的代码想要在浏览器运行必须经过编译成浏览器能识别的JS、CSS等语法&#x…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...