如何使用 Matlab 构建深度学习模型
深度学习已经成为了AI领域的热门话题,相信很多人都想学习如何构建深度学习模型,那么,我们就一起来看看如何使用Matlab构建深度学习模型。
首先,我们需要准备好Matlab的环境。Matlab是一款非常强大的数学计算软件,它提供了许多丰富的工具箱,包括深度学习工具箱。在使用Matlab构建深度学习模型之前,我们需要安装Matlab及其深度学习工具箱。安装完成后,我们可以通过以下命令检查是否已经正确安装深度学习工具箱:
>> deepLearningToolboxInstalled = ~isempty(ver('deep learning toolbox'))
如果返回值为1,则表示深度学习工具箱已经安装成功。
接下来,我们需要准备好数据。在构建深度学习模型之前,我们需要准备好数据,包括训练数据、验证数据和测试数据。在Matlab中,我们可以使用ImageDatastore来读取图像数据。例如,如果我们有一个包含图像数据的文件夹,我们可以使用以下命令将其读取进来:
>> imds = imageDatastore('path/to/image/folder', 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
其中,'path/to/image/folder'是我们的图像数据所在的文件夹路径,'IncludeSubfolders'表示是否包括子文件夹中的数据,'LabelSource'表示标签来源,可以是'foldernames'或'fileprefixes'。
接下来,我们需要选择合适的深度学习模型。在Matlab中,我们可以使用预训练的深度学习模型,也可以自己构建深度学习模型。如果我们想使用预训练的深度学习模型,我们可以使用以下命令来选择模型:
>> net = alexnet;
这将会选择一个名为AlexNet的预训练模型。如果我们想自己构建深度学习模型,我们可以使用以下命令:
>> layers = [
imageInputLayer([224 224 3])
convolution2dLayer(3, 64, 'Padding', 'same')
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 128, 'Padding', 'same')
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 256, 'Padding', 'same')
reluLayer
convolution2dLayer(3, 256, 'Padding', 'same')
reluLayer
maxPooling2dLayer(2, 'Stride)
现在我们已经准备好数据,并选择了一个合适的深度学习模型。接下来,我们需要对模型进行训练。在Matlab中,我们可以使用trainNetwork函数来训练模型。例如,如果我们要对一个AlexNet模型进行微调,我们可以使用以下命令:
>> options = trainingOptions('sgdm', ...
'MiniBatchSize', 32, ...
'MaxEpochs', 10, ...
'InitialLearnRate', 1e-4, ...
'Verbose', true, ...
'Plots', 'training-progress');
>> net = trainNetwork(imdsTrain, layers, options);
其中,'sgdm'表示我们使用随机梯度下降法来训练模型,'MiniBatchSize'表示每次迭代使用的数据大小,'MaxEpochs'表示最大迭代次数,'InitialLearnRate'表示学习率的初始值,'Verbose'表示是否显示训练过程,'Plots'表示是否显示训练进度图。
在训练模型时,我们需要注意过拟合的问题。如果模型在训练数据上表现很好,但在测试数据上表现很差,那么就可能出现过拟合的情况。为了解决这个问题,我们可以使用数据增强来扩充我们的训练数据。在Matlab中,我们可以使用ImageDataAugmenter函数来实现数据增强。例如,如果我们想对图像进行随机翻转、随机旋转和随机缩放,我们可以使用以下命令:
>> augmenter = imageDataAugmenter(...
'RandXReflection', true, ...
'RandYReflection', true, ...
'RandRotation', [-10 10], ...
'RandScale', [0.8 1.2]);
>> augimdsTrain = augmentedImageDatastore([224 224 3], imdsTrain, 'DataAugmentation', augmenter);
其中,'RandXReflection'和'RandYReflection'表示是否进行随机翻转,'RandRotation'表示随机旋转的角度范围,'RandScale'表示随机缩放的比例范围。
最后,我们需要对模型进行评估。在Matlab中,我们可以使用classify函数来进行分类。例如,如果我们想对一个测试图像进行分类,我们可以使用以下命令:
>> img = imread('test.jpg');
>> label = classify(net, img);
其中,'test.jpg'是我们的测试图像路径,'classify'函数将返回一个分类标签。
以上就是使用Matlab构建深度学习模型的一些基本步骤。当然,这只是一个简单的示例,实际情况可能更加复杂。不过,相信通过这篇文章的介绍,大家已经对如何使用Matlab构建深度学习模型有了一定的了解。希望大家能够在实践中多多尝试,探索出更加优秀的深度学习模型。
除了本文介绍的内容,Matlab还提供了更多的深度学习工具和函数,比如用于自然语言处理的词嵌入函数、用于目标检测的Faster R-CNN网络等。如果你对这些内容感兴趣,可以通过Matlab的文档和示例来进一步学习。在实践中,我们需要不断地尝试、调整,才能得到一个好的模型。深度学习是一个充满挑战和机遇的领域,希望大家能够在这条路上走得更远、更好!
相关文章:
如何使用 Matlab 构建深度学习模型
深度学习已经成为了AI领域的热门话题,相信很多人都想学习如何构建深度学习模型,那么,我们就一起来看看如何使用Matlab构建深度学习模型。 首先,我们需要准备好Matlab的环境。Matlab是一款非常强大的数学计算软件,它提…...

PDF怎么转CAD文件?(免费!高效转换方法汇总)
一般而言,PDF图纸是不能修改的。若需修改,则需将PDF转CAD,此时如何满足PDF转CAD的需求呢?今天,我将教你两种免费的PDF转CAD的方法,助力高效办公。 1.本地软件转换法 这是用本地软件转换方法,支…...
经历了野蛮生长之后,新科技或许已经抵达了全新的临界点
跳出仅仅只是以概念和营销的方式来定义元宇宙,真正找到元宇宙与现实商业之间的桥接,让元宇宙可以在真实实践上得到复现,才是保证元宇宙的发展可以进入到一个全新发展阶段的关键所在。归根到底,我们还是要找到元宇宙落地的正确的方…...

Segment Anything论文翻译,SAM模型,SAM论文,SAM论文翻译;一个用于图像分割的新任务、模型和数据集;SA-1B数据集
【论文翻译】- Segment Anything / Model / SAM论文 论文链接: https://arxiv.org/pdf/2304.02643.pdfhttps://ai.facebook.com/research/publications/segment-anything/ 代码连接:https://github.com/facebookresearch/segment-anything 论文翻译&…...

EMQX vs NanoMQ | 2023 MQTT Broker 对比
引言 EMQX 和 NanoMQ 都是由全球领先的开源物联网数据基础设施软件供应商 EMQ 开发的开源 MQTT Broker。 EMQX 是一个高度可扩展的大规模分布式 MQTT Broker,能够将百万级的物联网设备连接到云端。NanoMQ 则是专为物联网边缘场景设计的轻量级 Broker。 本文中我们…...

RabbitMQ实现消息的延迟推送或延迟发送
一、RabbitMQ是什么? 1.RabbitMQ简介 RabbitMQ是有erlang语言开发,基于AMQP(Advanced Message Queue 高级消息队列协议)协议实现的消息队列。 常见的消息队列有:RabbitMQ、Kafka 和 ActiveMQ 2.RabbitMQ的优点 Rab…...

解决python中import导入自己的包呈现灰色 无效的问题
打开File–> Setting—> 打开 Console下的Python Console,把选项(Add source roots to PYTHONPAT)点击勾选上。 右键点击需要导入的工作空间文件夹,找到Mark Directory as 选择Source Root。 另外,Python中的…...
消息中间件对比
1,常见消息中间件对比(后续逐个介绍) 比较项TubeMQKafkaPulsar数据时延非常低,10ms比较低,250ms非常低,10msTPS高,14W/s一般,10W/s高,14W/s (高性能场景)过滤消费支持服务端过滤和客户端过滤客…...

nodejs+vue 高校校园食堂餐品在线订购网
食堂作为学校的一个重要的部门,为学生提供了用餐的地点,学生可以在食堂享用丰富的餐品,建立一个在校订餐网站,帮助了学生提供一个用餐订餐的系统,也帮助了食堂提供了一个餐品展示的站点。 园的食堂作为一个窗口单位&a…...

SpringBoot【运维实用篇】---- SpringBoot程序的打包与运行
SpringBoot【运维实用篇】---- SpringBoot程序的打包与运行 程序打包程序运行SpringBoot程序打包失败处理命令行启动常见问题及解决方案 刚开始做开发学习的小伙伴可能在有一个知识上面有错误的认知,我们天天写程序是在Idea下写的,运行也是在Idea下运行的…...
10万字智慧政务数据中心平台建设方案
本资料来源公开网络,仅供个人学习,请勿商用,如有侵权请联系删除。 一、 项目建设内容 1. 基础支撑平台 基础支撑平台是云教育公共服务平台各子系统的公共运行环境,提供底层数据交换、集成服务以及统一身份认证和基础数据同步服…...
使用 TensorFlow 构建机器学习项目:1~5
原文:Building Machine Learning Projects with TensorFlow 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象&#x…...
【store商城项目08】删除用户的收获地址
1.删除收获地址-持久层 1.1规划SQL语句 根据aid判断数据是否存在,根据返回的uid判断数据是否对应(已开发)根据aid删除的SQL delete from t_address where aid ?根据1中的SQL返回的对象判断是否为默认地址,若为默认地址&#…...

SpringBooot
目录 一、简介 1、使用原因 2、JavaConfig (1)Configuration注解 (2)Bean注解 (3)ImportResource注解 (4)PropertyResource注解 (5)案例 3、简介 4…...
测牛学堂:2023软件测试linux和shell脚本入门系列(shell的运算符)
shell中的注释 以# 开头的就是shell中的注释,不会被执行,是给编程的人看的。 shell中的运算符 shell中有很多运算符。 按照分类,可以分为算术运算符,关系运算符,布尔运算符,字符串运算符,文件…...
TensorFlow 2.0 快速入门指南:第三部分
原文:TensorFlow 2.0 Quick Start Guide 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象,只关心如何实现…...
webpack介绍
webpack是一个静态资源打包工具 开发时,我们会使用框架(Vue,React),ES6模块化语法,Less/Sass等css预处理器等语法进行开发。 这样的代码想要在浏览器运行必须经过编译成浏览器能识别的JS、CSS等语法&#x…...
SpringBoot 面试题汇总
1、spring-boot-starter-parent 有什么用 ? 我们都知道,新创建一个 SpringBoot 项目,默认都是有 parent 的,这个 parent 就是 spring-boot-starter-parent ,spring-boot-starter-parent 主要有如下作用: 1、 定义了 J…...

已知原根多项式和寄存器初始值时求LFSR的简单例子
线性反馈移位寄存器(LFSR)是一种用于生成伪随机数序列的简单结构。在这里,我们有一个四项原根多项式 p ( x ) 1 x 0 x 2 11 0 2 p(x) 1 x 0x^2 110_2 p(x)1x0x21102 和初始值 S 0 100 S_0 100 S0100。我们将使用 LFSR 动作过…...

【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁
赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...

Redis上篇--知识点总结
Redis上篇–解析 本文大部分知识整理自网上,在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库,Redis 的键值对中的 key 就是字符串对象,而 val…...

性能优化中,多面体模型基本原理
1)多面体编译技术是一种基于多面体模型的程序分析和优化技术,它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象,通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中࿰…...