当前位置: 首页 > news >正文

三行Python代码,让数据处理速度提高2到6倍

本文可以教你仅使用 3 行代码,大大加快数据预处理的速度。

Python 是机器学习领域内的首选编程语言,它易于使用,也有很多出色的库来帮助你更快处理数据。但当我们面临大量数据时,一些问题就会显现……

在默认情况下,Python 程序是单个进程,使用单 CPU 核心执行。而大多数当代机器学习硬件都至少搭载了双核处理器。这意味着如果没有进行优化,在数据预处理的时候会出现「一核有难九核围观」的情况——超过 50% 的算力都会被浪费。在当前四核处理器(英特尔酷睿 i5)和 6 核处理器(英特尔酷睿 i7)大行其道的时候,这种情况会变得更加明显。

  幸运的是,Python 库中内建了一些隐藏的特性,可以让我们充分利用所有 CPU 核心的能力。通过使用 Python concurrent.futures 模块,我们只需要 3 行代码就可以让一个普通的程序转换成适用于多核处理器并行处理的程序。

标准方法

让我们举一个简单的例子,在单个文件夹中有一个图片数据集,其中有数万张图片。在这里,我们决定使用 1000 张。我们希望在所有图片被传递到深度神经网络之前将其调整为 600×600 像素分辨率的形式。以下是你经常会在 GitHub 上看到的标准 Python 代码:

import globimport osimport cv2### Loop through all jpg files in the current folder ### Resize each one to size 600x600for image_filename in glob.glob("*.jpg"):### Read in the image dataimg = cv2.imread(image_filename)### Resize the imageimg = cv2.resize(img, (600, 600)) 

上面的程序遵循你在处理数据脚本时经常看到的简单模式:

1. 首先从需要处理内容的文件(或其他数据)列表开始。

2. 使用 for 循环逐个处理每个数据,然后在每个循环迭代上运行预处理。

让我们在一个包含 1000 jpeg 文件的文件夹上测试这个程序,看看运行它需要多久:

time python standard_res_conversion.py

在我的酷睿 i7-8700k 6 CPU 上,运行时间为 7.9864 秒!在这样的高端 CPU 上,这种速度看起来是难以让人接受的,看看我们能做点什么。

更快的方法

为了便于理解并行化的提升,假设我们需要执行相同的任务,比如将 1000 个钉子钉入木头,假如钉入一个需要一秒,一个人就需要 1000 秒来完成任务。四个人组队就只需要 250 秒。

在我们这个包含 1000 个图像的例子中,可以让 Python 做类似的工作:

jpeg 文件列表分成 4 个小组;

运行 Python 解释器中的 4 个独立实例;

Python 的每个实例处理 4 个数据小组中的一个;

结合四个处理过程得到的结果得出最终结果列表。

这一方法的重点在于,Python 帮我们处理了所有棘手的工作。我们只需告诉它我们想要运行哪个函数,要用多少 Python 实例,剩下的就交给它了!只需改变三行代码。实例:

import globimport osimport cv2import concurrent.futuresdef load_and_resize(image_filename):### Read in the image dataimg = cv2.imread(image_filename)### Resize the imageimg = cv2.resize(img, (600, 600)) ### Create a pool of processes. By default, one is created for each CPU in your machine.with concurrent.futures.ProcessPoolExecutor() as executor:### Get a list of files to processimage_files = glob.glob("*.jpg")### Process the list of files, but split the work across the process pool to use all CPUs### Loop through all jpg files in the current folder ### Resize each one to size 600x600executor.map(load_and_resize, image_files)

从以上代码中摘出一行:

with concurrent.futures.ProcessPoolExecutor() as executor:

你的 CPU 核越多,启动的 Python 进程越多,我的 CPU 6 个核。实际处理代码如下:

executor.map(load_and_resize, image_files)

executor.map()」将你想要运行的函数和列表作为输入,列表中的每个元素都是我们函数的单个输入。由于我们有 6 个核,我们将同时处理该列表中的 6 个项目!

如果再次用以下代码运行我们的程序:

time python fast_res_conversion.py

我们可以将运行时间降到 1.14265 秒,速度提升了近 6 倍!

注意:在生成更多 Python 进程及在它们之间整理数据时会有一些开销,所以速度提升并不总是这么明显。但是总的来说,速度提升还是非常可观的。

它总是那么快吗? 

如果你有一个数据列表要处理,而且在每个数据点上执行相似的运算,那么使用 Python 并行池是一个很好的选择。但有时这不是最佳解决方案。并行池处理的数据不会在任何可预测的顺序中进行处理。如果你对处理后的结果有特殊顺序要求,那么这个方法可能不适合你。

你处理的数据也必须是 Python 可以「炮制」的类型。所幸这些指定类别都很常见。以下来自 Python 官方文件:

None, True, False

整数、浮点数、复数

字符串、字节、字节数组

只包含可挑选对象的元组、列表、集合和字典

在模块顶层定义的函数(使用 def ,而不是 lambda

在模块顶层定义的内置函数

在模块顶层定义的类

这种类的实例,其 __dict__ 或调用__getstate__() 的结果是可选择的(参见「Pickling Class Instances」一节)。

END

相关文章:

三行Python代码,让数据处理速度提高2到6倍

本文可以教你仅使用 3 行代码,大大加快数据预处理的速度。 Python 是机器学习领域内的首选编程语言,它易于使用,也有很多出色的库来帮助你更快处理数据。但当我们面临大量数据时,一些问题就会显现…… 在默认情况下,…...

空间向量模长

// 空间向量模长 #include <stdio.h> #include <stdlib.h> #include <math.h> int main(int argc, char **argv) { float x, y, z; float mochang 0.0; x y z 0.0; if (argc ! 4) { printf("usage:%s x y z\n", argv[1]); …...

活动需求中灵活使用Redis提升生产力

抽奖 一堆用户参与进来&#xff0c;然后随机抽取几个幸运用户给予实物/虚拟的奖品&#xff1b;此时&#xff0c;开发人员就需要写上一个抽奖的算法&#xff0c;来实现幸运用户的抽取&#xff1b;其实我们完全可以利用Redis的集合&#xff08;Set&#xff09;&#xff0c;就能轻…...

Java知识点学习(第16天)

Innodb是如何实现事务的&#xff1f; innodb通过Buffer Pool&#xff0c;LogBuffer&#xff0c;Redo Log&#xff0c;Undo Log来实现事务&#xff0c;以一个update语句为例&#xff1a; innodb在收到一个update语句后&#xff0c;会先根据条件找到数据所在的页&#xff0c;并…...

ORA-1688: unable to extend table AUDSYS.AUD$UNIFIED

昨晚正在外滩玩&#xff0c;有个客户发过来一段报错&#xff0c;已经影响到业务了。一看就是12C以后版本才有的问题&#xff0c;&#xff0c;赶紧在手机中收到临时解决办法 报错如下 ORA-1688: unable to extend table AUDSYS.AUD$UNIFIED partition SYS_P42549 by 1024 in t…...

抖音滑块以及轨迹分析

声明 本文以教学为基准、本文提供的可操作性不得用于任何商业用途和违法违规场景。 本人对任何原因在使用本人中提供的代码和策略时可能对用户自己或他人造成的任何形式的损失和伤害不承担责任。 如有侵权,请联系我进行删除。 我们在web端打开用户主页的时候,时不时的会出现滑…...

C#生成单色bmp图片,转为单色bmp图片 任意语言完全用字节拼一张单色图,LCD取模 其它格式图片转为单色图

最终效果&#xff1a; V1.8.2 20230419 文字生成单色BMP图片4.exe 默认1280*720 如果显示不全&#xff0c;请把宽和高加大 字体加大。 首先&#xff0c;用windows画板生成一张1*1白色单色图作为标准&#xff0c;数据如下&#xff1a; 数据解析参考&#xff1a;BMP图像文件完…...

【瑞吉外卖】002 -- 后台登录功能开发

本文章为对 黑马程序员Java项目实战《瑞吉外卖》的学习记录 目录 一、需求分析 1、页面原型展示 2、登录页面展示 3、查看登录请求信息 4、数据模型 二、代码开发 1、创建实体类Employee&#xff0c;和employee表进行映射 2、创建包结构&#xff1a;&#xff08;Controller、Se…...

【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

java IO流_1

目录 分类 字节流 InputStream OutputStream 文件拷贝 字符流 FileReader FileWriter 处理流 BufferedReader BufferedWriter 文本拷贝 流是从起源到接受的有序数据&#xff0c;通过流的方式允许程序使用相同的方式来访问不同的输入/输出源。 分类 按数据…...

【回忆 总结】我的大学四年

大学四年关键词速览 如果穿越回大一&#xff0c;你想对大一的你提什么最重要的建议&#xff1f;同样是上网课&#xff0c;我为何能比大多数同学学的更好&#xff1f;回到学校&#xff0c;我的大二似乎一帆风顺&#xff1f;在不断的迷茫和徘徊中&#xff0c;大三的我做出的决定&…...

深度解析OEKO

【深度解析OEKO】 什么是OEKO-TEX Standard 100&#xff1f; OEKO-TEX Standard 100现在是使用最为广泛的纺织品生态标志。OEKO-TEX Standard 100规定的标准是根据最新的科学知识&#xff0c;对纱线、纤维以及各类纺织品的有害物质含量规定限度。只有按照严格检测和检查程序提供…...

Golang gorm

GORM 指南 | GORM - The fantastic ORM library for Golang, aims to be developer friendly. 一 对多入门 比如要开发cmdb的系统&#xff0c;无论是硬件还是软件。硬件对应的就是对应的哪个开发在用。或者服务对应的是哪个业务模块在使用&#xff0c;或者应用谁在使用。那么这…...

rk3568 适配摄像头 (CIF协议)

rk3568 适配摄像头 (CIF协议) 在RK3568处理器中&#xff0c;支持CIF协议的摄像头可以通过CSI接口连接到处理器&#xff0c;实现视频数据的采集和处理。同时&#xff0c;RK3568还支持多种图像处理算法和编解码器&#xff0c;可以对采集到的视频数据进行实时处理和压缩&#xff…...

今天面试招了个25K的测试员,从腾讯出来的果然都有两把刷子···

公司前段时间缺人&#xff0c;也面了不少测试&#xff0c;前面一开始瞄准的就是中级的水准&#xff0c;也没指望来大牛&#xff0c;提供的薪资在15-25k&#xff0c;面试的人很多&#xff0c;但平均水平很让人失望。看简历很多都是4年工作经验&#xff0c;但面试中&#xff0c;不…...

Redis---集群环境准备

一、redis集群环境准备 1、部署Redis集群的目的&#xff1a; 多台服务器一起提供数据存储服务&#xff1b; 实现数据的分布式存储&#xff1b; 可以实现服务的高可用&#xff1b; 可用实现数据自动备份&#xff1b; 2、服务器IP地址及端口&#xff1a; 主机名 IP地…...

数据结构考研版——队列的配置问题

一、正常配置下的情况 队空状态 frontrear;入队操作 出队操作 队满状态 在正常配置下元素的个数&#xff08;rear>front&#xff09; 当rear<front 综上所述用一个表达式表示&#xff1a;(rear-frontmaxSize)%maxSize 二、非正常配置下的情况1 队空状态 入队操作…...

【SOAP-WebService系列】SOAP学习笔记

目录 1、SOAP是什么&#xff1f; 2、SOAP特性 3、SOAP消息组成 4、SOAP调用 5、SOAP和HTTP 1、SOAP是什么&#xff1f; SOAP(Simple Object Access Protocol&#xff0c;即简单对象访问协议) &#xff0c;是一个轻量级协议&#xff0c;用于在分散的分布式环境中使用XML在对…...

材料科学|名词解释终版!!!

晶体&#xff1a;组成物质的原子&#xff0c;分子或离子按照一定的周期性规则排列形成的固体。 非晶体&#xff1a;原子在三维空间的不规则排列&#xff0c;长程无序&#xff0c;各向同性。 晶体结构&#xff1a;原子&#xff0c;离子&#xff0c;原子团按照空间点阵而进行的…...

永久免费内网穿透不限制速度

市面上的免费内网穿透大都有格式各样的限制&#xff0c;什么限制流量啊&#xff0c;每个月要签到打卡啊&#xff0c;还有更改域名地址等&#xff0c;只有神卓互联内网穿透是永久免费没有限制的&#xff0c;白嫖也可以。 这篇文章分享了3个方案&#xff0c;按照性能和综合指标排…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...