当前位置: 首页 > news >正文

CF1707E Replace

题目描述

给定一个长为 nnn 的序列 a1,…,ana_1,\ldots,a_na1,,an,其中对于任意的 iii 满足 1≤ai≤n1 \leq a_i \leq n1ain

定义一个二元组函数如下:
f((l,r))=(min⁡{al,…,ar},max⁡{al,…,ar})(l≤r)f((l,r))=(\min\{a_l,\ldots,a_r\},\max\{a_l,\ldots,a_r\})(l \leq r)f((l,r))=(min{al,,ar},max{al,,ar})(lr)

你需要回答 qqq 次询问,每次给定 (li,ri)(l_i,r_i)(li,ri),问其最少经过多少次 fff 的调用(即 (l,r)→f((l,r))(l,r) \rightarrow f((l,r))(l,r)f((l,r)))使得 (li,ri)(l_i,r_i)(li,ri) 变成 (1,n)(1,n)(1,n),若无解请输出 -1

题解

智慧的性质题
首先注意到f((l,r))=⋃i=lr−1f((i,i+1))f((l,r))=\bigcup_{i=l}^{r-1}f((i,i+1))f((l,r))=i=lr1f((i,i+1))
发现可以推广到fk((l,r))=⋃i=lr−1fk((i,i+1))f^k((l,r))=\bigcup_{i=l}^{r-1}f^k((i,i+1))fk((l,r))=i=lr1fk((i,i+1)),可以用归纳法证明
接下来的做法就容易可以想出了
Fi,j=f2i((j,j+1))F_{i,j}=f^{2^i}((j,j+1))Fi,j=f2i((j,j+1)),然后倍增解决,合并区间可以用线段树,长度为111的线段需要特别处理

code\text{code}code

#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
void read(int &res)
{res=0;char ch=getchar();while(ch<'0'||ch>'9') ch=getchar();while('0'<=ch&&ch<='9') res=(res<<1)+(res<<3)+(ch^48),ch=getchar();
}
const int N=1e5+100,B=40;
int n,q,a[N+10];
struct seg
{int l,r;
}f[B+10][N+10];
int g[B+10][N+10];
seg merge(seg a,seg b){return (seg){min(a.l,b.l),max(a.r,b.r)};}
struct SEG
{seg t[N<<2|1];#define ls (p<<1)#define rs (p<<1|1)#define mid ((l+r)>>1)void build(seg *f,int p=1,int l=1,int r=n-1){if(l==r){t[p]=f[l];return;}build(f,ls,l,mid),build(f,rs,mid+1,r);t[p]=merge(t[ls],t[rs]);}seg query(int L,int R,int p=1,int l=1,int r=n-1){if(L<=l&&r<=R) return t[p];if(R<=mid) return query(L,R,ls,l,mid);else if(L>mid) return query(L,R,rs,mid+1,r);else return merge(query(L,R,ls,l,mid),query(L,R,rs,mid+1,r));}#undef ls#undef rs#undef mid
}t[B+10];
int main()
{
//	freopen("a.in","r",stdin);read(n),read(q);if(n==1){for(;q--;) printf("0\n");return 0;}for(int i=1;i<=n;i++) read(a[i]);for(int i=1;i<n;i++) f[0][i]=(seg){min(a[i],a[i+1]),max(a[i],a[i+1])},g[0][i]=a[i];t[0].build(f[0]);for(int j=1;j<=B;j++){for(int i=1;i<n;i++){if(f[j-1][i].l==f[j-1][i].r) f[j][i]=(seg){g[j-1][f[j-1][i].l],g[j-1][f[j-1][i].l]};else f[j][i]=t[j-1].query(f[j-1][i].l,f[j-1][i].r-1);}t[j].build(f[j]);for(int i=1;i<=n;i++) g[j][i]=g[j-1][g[j-1][i]];}for(int l,r;q--;){read(l),read(r);if(l==1&&r==n){printf("0\n");continue;}ll ans=0;if(l!=r)for(int i=B;i>=0;i--){seg tmp=t[i].query(l,r-1);if(tmp.l!=1||tmp.r!=n){l=tmp.l,r=tmp.r;ans+=(1ll<<i);}if(l==r) break;}if(l==r) printf("-1\n");else{seg tmp=t[0].query(l,r-1);if(tmp.l==1&&tmp.r==n) printf("%lld\n",ans+1);else printf("-1\n");}}return 0;
}

相关文章:

CF1707E Replace

题目描述 给定一个长为 nnn 的序列 a1,…,ana_1,\ldots,a_na1​,…,an​&#xff0c;其中对于任意的 iii 满足 1≤ai≤n1 \leq a_i \leq n1≤ai​≤n。 定义一个二元组函数如下&#xff1a; f((l,r))(min⁡{al,…,ar},max⁡{al,…,ar})(l≤r)f((l,r))(\min\{a_l,\ldots,a_r\}…...

【Hello Linux】Linux工具介绍 (make/makefile git)

作者&#xff1a;小萌新 专栏&#xff1a;Linux 作者简介&#xff1a;大二学生 希望能和大家一起进步&#xff01; 本篇博客简介&#xff1a;介绍Linux的常用工具make/makefile git Linux项目自动化构建工具 – make/Makefile 背景 会不会写Makefile 从侧面说明了一个人是否具…...

享元模式flyweight

享元模式属于结构型模式。享元模式是池技术的重要实现方式&#xff0c;它可以减少重复对象的创建&#xff0c;使用缓存来共享对象&#xff0c;从而降低内存的使用。细粒度的对象其状态可以分为两种&#xff1a;内部状态和外部状态。应用场景系统存在大量相似或相同的对象。外部…...

Pulsar

一、简介Apache Pulsar是Apache软件基金会顶级项目&#xff0c;是下一代云原生分布式消息流平台&#xff0c;集消息、存储、轻量化函数式计算为一体&#xff0c;采用计算与存储分离架构设计&#xff0c;支持多租户、持久化存储、多机房跨区域数据复制&#xff0c;具有强一致性、…...

项目介绍 + 定长内存池设计及实现

你好&#xff0c;我是安然无虞。 文章目录项目介绍当前项目做的是什么?技术栈内存池是什么?池化技术内存池内存池主要解决的问题malloc定长内存池学习目的定长内存池设计项目介绍 当前项目做的是什么? 这个项目是实现一个高并发的内存池, 它的原型是 Google 的一个开源项…...

Linux--线程安全的单例模式--自旋锁--0211

1. 线程安全的单例模式 1.1 什么是单例模式 某些类, 只应该具有一个对象(实例), 就称之为单例. 1.1.1 懒汉方式实现单例模式 以上篇博文的线程池为例 Liunx--线程池的实现--0208 09_Gosolo&#xff01;的博客-CSDN博客 实现懒汉模式首先要先将构造函数私有化&#xff0c;…...

图文解说S参数(进阶篇)

S参数是RF工程师/SI工程师必须掌握的内容&#xff0c;业界已有多位大师写过关于S参数的文章&#xff0c;即便如此&#xff0c;在相关领域打滚多年的人&#xff0c; 可能还是会被一些问题困扰着。你懂S参数吗? 图文解说S参数&#xff08;基础篇&#xff09; 请继续往下看...台湾…...

Sentinel源码阅读

基础介绍 Sentinel 的使用可以分为两个部分: 核心库&#xff08;Java 客户端&#xff09;&#xff1a;不依赖任何框架/库&#xff0c;能够运行于 Java 8 及以上的版本的运行时环境&#xff0c;同时对 Dubbo / Spring Cloud 等框架也有较好的支持&#xff08;见 主流框架适配&…...

2023年浙江食品安全管理员考试真题题库及答案

百分百题库提供食品安全管理员考试试题、食品安全管理员考试预测题、食品安全管理员考试真题、食品安全管理员证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 一、判断题 7.&#xff08;重点&#xff09;《餐饮服务食品安全…...

Webstorm 代码没有提示,uniapp 标签报错

问题 项目是用脚手架创建的&#xff1a; vue create -p dcloudio/uni-preset-vue my-project 打开之后&#xff0c;添加view标签警告报错的。代码也没有提示&#xff0c;按官方说法&#xff1a;CLI 工程默认带了 uni-app 语法提示和 5App 语法提示。 但是我这里就是有问题。…...

MySQL-Innodb引擎事务原理

文章目录1.事务介绍2 事务特性3. 事务的实现原理4 redo log 保证持久性5 undo log 保证原子性6 MVCC 概念6.1 隐藏字段6.2 版本链6.3 ReadView6.3.1readview 版本控制规则7 隔离性 实现7.2 隔离性- REPEATABLE READ 可重复读下8 一致性1.事务介绍 事务是一组操作的集合&#xf…...

Linux操作系统学习(了解环境变量)

文章目录环境变量初识除了上述介绍的PATH&#xff0c;还有一些常见的环境变量如&#xff1a;查看环境变量方法 &#xff1a;环境变量的基本概念&#xff1a;本地变量&#xff1a;环境变量初识 环境变量解释起来比较抽象&#xff0c;先看示例&#xff1a; #include <stdio.…...

数据分析思维(六)|循环/闭环思维

循环/闭环思维 1、概念 在很多的分析场景下&#xff0c;我们需要按照一套流程反复分析&#xff0c;而不是进行一次性的分析&#xff0c;也就是说这套流程的结果会成为该流程的新一次输入&#xff0c;从而形成一个闭环&#xff0c;此时的分析思维我们称之为循环/闭环思维。 常…...

C++:类和对象(下)

文章目录1 再谈构造函数1.1 构造函数体赋值1.2 初始化列表1.3 explicit关键字2 static成员2.1 概念2.2 特性3 友元3.1 友元函数&#xff08;流插入&#xff08;<<&#xff09;及流提取&#xff08;>>&#xff09;运算符重载&#xff09;3.2 友元类4 内部类5 匿名对…...

ASP.NET Core MVC 项目 AOP之IResultFilter和IAsyncResultFilter

目录 一:说明 二:IActionFilter同步 三:IAsyncActionFilter异步 一:说明 IResultFilter同步过滤器与IAsyncResultFilter异步过滤器常常被用作于渲染视图或处理结果。 IResultFilter同步过滤器执行顺序: 1:执行控制器中的构造函数,实例化控制器 2:执行具体的Acti…...

jstack排查cpu占用高[复习]

这样就可以看到占用CPU高的代码位置。 总结&#xff1a;就是先查到占用高的应用和具体的线程&#xff0c;然后根据线程到堆积信息查找即可。 不过堆栈信息非十进制&#xff0c;需提前把线程号转为十六进制。 这样就可以看到占用CPU高的代码位置。 总结&#xff1a;就是先查到…...

网络安全-Pyhton环境搭建

网络安全-Pyhton环境搭建 https://www.kali.org/get-kali/#kali-installer-images—kali官网下载地址 python这个东东呢 是目前来说最简单&#xff0c;方便的开源的脚本语言 广泛用于Web开发&#xff0c;AI&#xff0c;网站开发等领域 python要装2和3 为什么要安装两个版本…...

SpringBoot Mybatis 分页实战

pageInfo的属性 pageNum&#xff1a;当前页 pageSize&#xff1a;页面数据量 startRow&#xff1a;当前页首条数据为总数据的第几条 endRow&#xff1a;当前页最后一条数据为总数据的第几条 total&#xff1a;总数据量 pages&#xff1a;总页面数 listPage{}结果集 reasonable …...

计算机断层扫描结肠镜和全自动骨密度仪在一次检查中的可行性

计算机断层扫描结肠镜和全自动骨密度仪在一次检查中的可行性 Feasibility of Simultaneous Computed Tomographic Colonography and Fully Automated Bone Mineral Densitometry in a Single Examination 简单总结&#xff1a; 数据&#xff1a;患者的结肠镜检查和腹部CT检查…...

Java多级缓存是为了解决什么的?

前言   提到缓存&#xff0c;想必每一位软件工程师都不陌生&#xff0c;它是目前架构设计中提高性能最直接的方式。   缓存技术存在于应用场景的方方面面。从网站提高性能的角度分析&#xff0c;缓存可以放在浏览器&#xff0c;可以放在反向代理服务器&#xff0c;还可以放…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

pycharm 设置环境出错

pycharm 设置环境出错 pycharm 新建项目&#xff0c;设置虚拟环境&#xff0c;出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...

AD学习(3)

1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分&#xff1a; &#xff08;1&#xff09;PCB焊盘&#xff1a;表层的铜 &#xff0c;top层的铜 &#xff08;2&#xff09;管脚序号&#xff1a;用来关联原理图中的管脚的序号&#xff0c;原理图的序号需要和PCB封装一一…...

用递归算法解锁「子集」问题 —— LeetCode 78题解析

文章目录 一、题目介绍二、递归思路详解&#xff1a;从决策树开始理解三、解法一&#xff1a;二叉决策树 DFS四、解法二&#xff1a;组合式回溯写法&#xff08;推荐&#xff09;五、解法对比 递归算法是编程中一种非常强大且常见的思想&#xff0c;它能够优雅地解决很多复杂的…...