SparkStreaming学习之——无状态与有状态转化、遍历kafka的topic消息、WindowOperations
目录
一、状态转化
二、kafka topic A→SparkStreaming→kafka topic B
(一)rdd.foreach与rdd.foreachPartition
(二)案例实操1
1.需求:
2.代码实现:
3.运行结果
(三)案例实操2
1.需求:
2.代码实现:
3.运行结果
三、WindowOperations
1.WindowOperations 窗口概述
2.代码示例
3.运行结果
一、状态转化
无状态转化操作就是把简单的 RDD 转化操作应用到每个批次上,也就是转化 DStream 中的每一个 RDD。
有状态转化操作就是窗口与窗口之间的数据有关系。上次一UpdateStateByKey 原语用于记录历史记录,有时,我们需要在 DStream 中跨批次维护状态(例如流计算中累加 wordcount)。针对这种情况,updateStateByKey()为我们提供了对一个状态变量的访问,用于键值对形式的 DStream。给定一个由(键,事件)对构成的 DStream,并传递一个指 定如何根据新的事件更新每个键对应状态的函数,它可以构建出一个新的 DStream,其内部数据为(键,状态) 对。
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}object SparkStreamingKafkaSource {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf().setAppName("sparkKafkaStream").setMaster("local[*]")val streamingContext = new StreamingContext(conf, Seconds(5))streamingContext.checkpoint("checkpoint")val kafkaParams = Map((ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "lxm147:9092"),(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),(ConsumerConfig.GROUP_ID_CONFIG -> "sparkstreamgroup1"))val kafkaStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent,ConsumerStrategies.Subscribe(Set("sparkkafkastu"), kafkaParams))// TODO 无状态:每个窗口数据独立/*val wordCountStream: DStream[(String, Int)] = kafkaStream.flatMap(_.value().toString.split("\\s+")).map((_, 1)).reduceByKey(_ + _)wordCountStream.print()*/// TODO 有状态:窗口与窗口之间的数据有关系val sumStateStream: DStream[(String, Int)] = kafkaStream.flatMap(x => x.value().toString.split("\\s+")).map((_, 1)).updateStateByKey {case (seq, buffer) => {println("进入到updateStateByKey函数中")println("seqvalue:", seq.toList.toString())println("buffer:", buffer.getOrElse(0).toString)val sum: Int = buffer.getOrElse(0) + seq.sumOption(sum)}}sumStateStream.print()streamingContext.start()streamingContext.awaitTermination()}
}
有状态转化会将之前的历史记录与当前输入的数据进行计算:


二、kafka topic A→SparkStreaming→kafka topic B
(一)rdd.foreach与rdd.foreachPartition
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}import java.util/*** 将数据从kafka的topic A取出数据后加工处理,之后再输出到kafka的topic B中*/
object SparkStreamKafkaSourceToKafkaSink {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf().setAppName("sparkKafkaStream2").setMaster("local[*]")val streamingContext = new StreamingContext(conf, Seconds(5))streamingContext.checkpoint("checkpoint")streamingContext.checkpoint("checkpoint")val kafkaParams = Map( // TODO 连接生产者端的topic(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "lxm147:9092"),(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),(ConsumerConfig.GROUP_ID_CONFIG -> "kfkgroup2"))val kafkaStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent,// 如果没有topic需要创建// kafka-topics.sh --create --zookeeper lxm147:2181 --topic sparkkafkademoin --partitions 1 --replication-factor 1ConsumerStrategies.Subscribe(Set("sparkkafkademoin"), kafkaParams))println("1.配置spark消费kafkatopic")// TODO 使用foreachRDD太过消耗资源——不推荐kafkaStream.foreachRDD( // 遍历rdd => {println("2.遍历spark DStream中每个RDD")// 每隔5秒输出一次/* rdd.foreach(y => { // y:kafka中的keyValue对象println(y.getClass + " 遍历RDD中的每一条kafka的记录")val props = new util.HashMap[String, Object]()// TODO 连接消费者端的topicprops.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "lxm147:9092")props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")val producer = new KafkaProducer[String, String](props)val words: Array[String] = y.value().toString.trim.split("\\s+") // hello worldfor (word <- words) {val record = new ProducerRecord[String, String]("sparkkafkademoout", word + ",1")producer.send(record)}}) */rdd.foreachPartition(rdds => { // rdds是包含rdd某个分区内的所有元素println("3.rdd 每个分区内的所有kafka记录集合")val props = new util.HashMap[String, Object]() // TODO 连接消费者端的topicprops.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "lxm147:9092")props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")val producer = new KafkaProducer[String, String](props)rdds.foreach(y => {println("4.遍历获取rdd某一个分区内的每一条消息")val words: Array[String] = y.value().trim.split("\\s+")for (word <- words) {val record = new ProducerRecord[String, String]("sparkkafkademoout", word + ",1")producer.send(record)}})})})streamingContext.start()streamingContext.awaitTermination()}
}
(二)案例实操1
1.需求:
清洗前:
user , friends
3197468391,1346449342 3873244116 4226080662 1222907620清洗后:
user ,friends 目标topic:user_friends2
3197468391,1346449342
3197468391,3873244116
3197468391,4226080662
3197468391,1222907620
2.代码实现:
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}import java.utilobject SparkStreamUserFriendrawToUserFriend {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf().setAppName("sparkufStream2").setMaster("local[2]")val streamingContext = new StreamingContext(conf, Seconds(5))streamingContext.checkpoint("checkpoint")val kafkaParams = Map( // TODO 连接生产者端的topic(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "lxm147:9092"),(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),(ConsumerConfig.GROUP_ID_CONFIG -> "sparkuf3"),(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG -> "earliest"))val kafkaStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent,// 如果没有topic需要创建// kafka-topics.sh --create --zookeeper lxm147:2181 --topic user_friends2 --partitions 1 --replication-factor 1ConsumerStrategies.Subscribe(Set("user_friends_raw"), kafkaParams))kafkaStream.foreachRDD(rdd => {rdd.foreachPartition(x => {val props = new util.HashMap[String, Object]() // TODO 连接消费者端的topicprops.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "lxm147:9092")props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")val producer = new KafkaProducer[String, String](props)x.foreach(y => {val splits: Array[String] = y.value().split(",")if (splits.length == 2) {val userid: String = splits(0)val friends: Array[String] = splits(1).split("\\s+")for (friend <- friends) {val record = new ProducerRecord[String, String]("user_friends2", userid + "," + friend)producer.send(record)}}})})})streamingContext.start()streamingContext.awaitTermination()}
}
3.运行结果

(三)案例实操2
1.需求:
清洗前:
event , yes , maybe , invited ,no
1159822043,1975964455 3973364512,2733420590 ,1723091036 795873583,3575574655清洗前后:
eventid ,friendid ,status
1159822043,1975964455,yes
1159822043,3973364512,yes
1159822043,2733420590,maybe
1159822043,1723091036,invited1159822043,795873583,invited
1159822043,3575574655,no
2.代码实现:
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}import java.utilobject SparkStreamEventAttToEvent2 {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf().setAppName("sparkufStream2").setMaster("local[2]")val streamingContext = new StreamingContext(conf, Seconds(5))streamingContext.checkpoint("checkpoint")val kafkaParams = Map( // TODO 连接生产者端的topic(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "lxm147:9092"),(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),(ConsumerConfig.GROUP_ID_CONFIG -> "sparkevent"),(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG -> "earliest"))val kafkaStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent,// 如果没有topic需要创建// kafka-topics.sh --create --zookeeper lxm147:2181 --topic event2 --partitions 1 --replication-factor 1ConsumerStrategies.Subscribe(Set("event_attendees_raw"), kafkaParams))kafkaStream.foreachRDD(rdd => {rdd.foreachPartition(x => {val props = new util.HashMap[String, Object]() // TODO 连接消费者端的topicprops.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "lxm147:9092")props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")val producer = new KafkaProducer[String, String](props)x.foreach(y => { // todo 遍历获取rdd某一个分区内的每一条消息val splits: Array[String] = y.value().split(",")val eventID: String = splits(0)if (eventID.trim.nonEmpty) {if (splits.length >= 2) {val yesarr: Array[String] = splits(1).split("\\s+")for (yesID <- yesarr) {val yes = new ProducerRecord[String, String]("event2", eventID + "," + yesID + ",yes")producer.send(yes)}}if (splits.length >= 3) {val maybearr: Array[String] = splits(2).split("\\s+")for (maybeID <- maybearr) {val yes = new ProducerRecord[String, String]("event2", eventID + "," + maybeID + ",maybe")producer.send(yes)}}if (splits.length >= 4) {val invitedarr: Array[String] = splits(3).split("\\s+")for (invitedID <- invitedarr) {val invited = new ProducerRecord[String, String]("event2", eventID + "," + invitedID + ",invited")producer.send(invited)}}if (splits.length >= 5) {val noarr: Array[String] = splits(4).split("\\s+")for (noID <- noarr) {val no = new ProducerRecord[String, String]("event2", eventID + "," + noID + ",no")producer.send(no)}}}})})})streamingContext.start()streamingContext.awaitTermination()}
}
3.运行结果

三、WindowOperations
1.WindowOperations 窗口概述
Window Operations 可以设置窗口的大小和滑动窗口的间隔来动态的获取当前Steaming 的允许状态。所有基于窗口的操作都需要两个参数,分别为窗口时长以及滑动步长。
➢ 窗口时长:计算内容的时间范围;
➢ 滑动步长:隔多久触发一次计算。
注意:这两者都必须为采集周期大小的整数倍。
2.代码示例
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}object SparkWindowDemo1 {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf().setAppName("sparkwindow1").setMaster("local[*]")val streamingContext = new StreamingContext(conf, Seconds(3))streamingContext.checkpoint("checkpoint")val kafkaParams = Map( // TODO 连接生产者端的topic(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "lxm147:9092"),(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),(ConsumerConfig.GROUP_ID_CONFIG -> "sparkwindow"),(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG -> "latest"))val kafkaStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent,ConsumerStrategies.Subscribe(Set("sparkkafkastu"), kafkaParams))val winStream: DStream[(String, Int)] = kafkaStream.flatMap(x => x.value().trim.split("\\s+")).map((_, 1)).window(Seconds(9), Seconds(3))winStream.print()streamingContext.start()streamingContext.awaitTermination()}
}
注意:window的步长不进行设置,默认是采集周期
3.运行结果


相关文章:
SparkStreaming学习之——无状态与有状态转化、遍历kafka的topic消息、WindowOperations
目录 一、状态转化 二、kafka topic A→SparkStreaming→kafka topic B (一)rdd.foreach与rdd.foreachPartition (二)案例实操1 1.需求: 2.代码实现: 3.运行结果 (三)案例实操2 1.需求: 2.代码实现: 3.运行结果 三、W…...
上市公司碳排放测算数据(1992-2022年)
根据《温室气体核算体系》,企业的碳排放可以分为三个范围。 范围一是直接温室气体排放,产生于企业拥有或控制的排放源,例如企业拥有或控制的锅炉、熔炉、车辆等产生的燃烧排放;拥有或控制的工艺设备进行化工生产所产生的排放。 范…...
Springboot 整合 JPA 及 Swagger2
首先是官方文档: Spring Data JPA - Reference Documentationhttps://docs.spring.io/spring-data/jpa/docs/2.2.4.RELEASE/reference/html/#repositories.query-methods 1、JPA相关概念 2、创建 Springboot 项目 修改 pom 文件,可以直接进行复制粘贴&a…...
android aidl
本文只是记录个人学习aidl的实现,如需学习请参考下面两篇教程 官方文档介绍Android 接口定义语言 (AIDL) | Android 开发者 | Android Developers 本文参考文档Android进阶——AIDL详解_android aidl_Yawn__的博客-CSDN博客 AIDL定义:Android 接口…...
MYSQL---主从同步概述与配置
一、MYSQL主从同步概述 1、什么是MySQL主从同步? 实现数据自动同步的服务结构 主服务器(master): 接受客户端访问连接 从服务器(slave):自动同步主服务器数据 2、主从同步原理 Maste:启用binlog 日志 Slave:Slave_IO: 复制master主…...
WebClient学习
1. 介绍 Java中传统的RestTemplate 的主要问题在于不支持响应式流规范,也就无法提供非阻塞式的流式操作。而WebClient是响应式、非阻塞的客户端,属于Spring5中的spring-webflux库 2. 依赖 maven依赖 <dependency><groupId>org.springfra…...
「计算机控制系统」6. 直接设计法
特殊类型系统的最小拍无差设计 一般系统的最小拍无差设计 最小拍控制器的工程化改进 Dahlin算法 文章目录 特殊类型系统的最小拍无差设计理论分析典型输入函数的最小拍无差系统 一般系统的最小拍无差设计有波纹最小拍无差设计无波纹最小拍无差设计 最小拍控制器的工程化改进针对…...
什么是JWT?
起源 需要了解一门技术,首先从为什么产生开始说起是最好的。JWT 主要用于用户登录鉴权,所以我们从最传统的 session 认证开始说起。 session认证 众所周知,http 协议本身是无状态的协议,那就意味着当有用户向系统使用账户名称和…...
STM32—0.96寸OLED液晶显示
本文主要介绍基于STM32F103的0.96寸的OLED液晶显示,详细关于0.96寸OLED液晶屏幕的介绍可参考这篇博客:https://blog.csdn.net/u011816009/article/details/130119426 一、简介 OLED被称为有机激光二极管,也被称为有机激光显示,O…...
Mysql的简介和选择
文章目录 前言一、为什么要使用数据库 数据库的概念为什么要使用数据库二、程序员为什么要学习数据库三、数据库的选择 主流数据库简介使用MySQL的优势版本选择四、Windows 平台下安装与配置MySQL 启动MySQL 服务控制台登录MySQL命令五、Linux 平台下安装与配置MySQL总结 前言…...
3D视觉之深度相机方案
随着机器视觉,自动驾驶等颠覆性的技术逐步发展,采用 3D 相机进行物体识别,行为识别,场景 建模的相关应用越来越多,可以说 3D 相机就是终端和机器人的眼睛。 3D 相机 3D 相机又称之为深度相机,顾名思义&…...
Mysql列的完整性约束详解(主键约束)
文章目录 前言一、设置表字段的主键约束(PRIMARY KEY,PK) 1.单字段主键2.多字段主键总结 前言 完整性约束条件是对字段进行限制,要求用户对该属性进行的操作符合特定的要求。如果不满足完整性约束条件,数据库系统将不再…...
母婴市场竞争激烈,如何通过软文营销脱颖而出
如今,随着宝宝数量增加以及人们对孩子的重视程度的增加,母婴市场愈发火爆。然而,母婴行业的竞争也越来越激烈,企业需要不断开拓新市场才能生存。在这样的情况下,软文营销成为了母婴企业拓展市场的一种有效方式。 首先&…...
java--线程池
目录 1.线程池概 2 为什么要使用线程池 1创建线程问题 2解决上面两个问题思路: 3线程池的好处 4线程池适合应用场景 3 线程池的构造函数参数 1.corePoolSize int 线程池核心线程大小 2.maximumPoolSize int 线程池最大线程数量 3.keepAliveTime long 空闲…...
asp.net765数码手机配件租赁系统
员工部分功能 1.员工登录,员工通过自己的账号和密码登录到系统中来,对租赁信息进行管理 2.配件查询,员工可以查询系统内的配件信息 3.客户信息管理,员工可以管理和店内有业务往来的客户信息 4.配件租赁,员工可以操作用…...
有关态势感知(SA)的卷积思考
卷积是一种数学运算,其本质是将两个函数进行操作,其中一个函数是被称为卷积核或滤波器的小型矩阵,它在另一个函数上滑动并产生新的输出。在计算机视觉中,卷积通常用于图像处理和特征提取,它可以通过滤波器对输入图像进…...
Docker快速部署springboot项目
有很多开发者在项目部署过程中都会遇到一些繁琐的问题,比如打包、上传、部署等。而使用Docker可以非常方便地解决这些问题。在本文中,将详细讲解如何使用IDEA中的docker打包插件,将代码打包并直接发布到服务器上。这样,我们就可以…...
Linux命令rsync增量同步目录下的文件
业务场景描述 最近遇到一个问题,需要编写相应的Linux命令,增量同步/var/mysql里的所有文件到另外一个目录/opt/mysql,但是里面相关的日志文件xx.log是不同步的,这个场景,可以使用rsync来实现 什么是rsync命令&#x…...
项目管理---(1)项目管理一般知识
一、项目管理一般知识 1.1 项目的一般知识 1.1.1 项目的定义: 项目是为创造独特的产品、服务或成果而进行的临时性工作。 1.1.2 项目的目标: 项目的目标包括成果性目标和约束性目标。 成果性目标:指通过项目开发出满足客户要求的产品、系…...
超过50多个热门的免费可用 API 分享
今天吃什么:随机返回一顿美味食物,解决你今天吃什么的难题。万年历:获取公历日期对应的农历、农历节日节气、天干地支纪年纪月纪日、生肖属相、宜忌、星座等信息。支持查询未来15天。笑话大全:各种最新、最及时的幽默、搞笑段子&a…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
渗透实战PortSwigger靶场:lab13存储型DOM XSS详解
进来是需要留言的,先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码,输入的<>当成字符串处理回显到页面中,看来只是把用户输…...
密码学基础——SM4算法
博客主页:christine-rr-CSDN博客 专栏主页:密码学 📌 【今日更新】📌 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 编辑…...
小智AI+MCP
什么是小智AI和MCP 如果还不清楚的先看往期文章 手搓小智AI聊天机器人 MCP 深度解析:AI 的USB接口 如何使用小智MCP 1.刷支持mcp的小智固件 2.下载官方MCP的示例代码 Github:https://github.com/78/mcp-calculator 安这个步骤执行 其中MCP_ENDPOI…...

