当前位置: 首页 > news >正文

实战项目:手把手带你实现一个高并发内存池

项目介绍

1.这个项目做的是什么?

当前项目是实现一个高并发的内存池,他的原型是google的一个开源项目tcmalloc,tcmalloc全称Thread-Caching Malloc,即线程缓存的malloc,实现了高效的多线程内存管理,用于替代系统的内存分配相关的函数(malloc、free)。

2.项目目标

模拟实现出一个自己的高并发内存池,在多线程环境下缓解了锁竞争问题,相比于malloc/free效率提高了25%左右,将内存碎片保持在10%左右。

内存池介绍

池化技术

所谓“池化技术”,就是程序先向系统申请过量的资源,然后自己管理,以备不时之需。之所以要申请过量的资源,是因为每次申请该资源都有较大的开销,不如提前申请好了,这样使用时就会变得非常快捷,大大提高程序运行效率。

在计算机中,有很多使用“池”这种技术的地方,除了内存池,还有连接池、线程池、对象池等。以服务器上的线程池为例,它的主要思想是:先启动若干数量的线程,让它们处于睡眠状态,当接收到客户端的请求时,唤醒池中某个睡眠的线程,让它来处理客户端的请求,当处理完这个请求,线程又进入睡眠状态。

内存池

内存池是指程序预先从操作系统申请一块足够大内存,此后,当程序中需要申请内存的时候,不是直接向操作系统申请,而是直接从内存池中获取;同理,当程序释放内存的时候,并不真正将内存返回给操作系统,而是返回内存池。当程序退出(或者特定时间)时,内存池才将之前申请的内存真正释放。

内存池主要解决的问题

内存池主要解决的当然是效率的问题,其次如果作为系统的内存分配器的角度,还需要解决一下内存碎片的问题。那么什么是内存碎片呢?

 

定长内存池

作为程序员(C/C++)我们知道申请内存使用的是malloc,malloc其实就是一个通用的大众货,什么场景下都可以用,但是什么场景下都可以用就意味着什么场景下都不会有很高的性能,下面我们就先来设计一个定长内存池做个开胃菜,当然这个定长内存池在我们后面的高并发内存池中也是有价值的,所以学习他目的有两层,先熟悉一下简单内存池是如何控制的,第二他会作为我们后面内存池的一个基础组件。

 定长内存池之所以高效:是因为它可以切除固定大小的内存,供线程使用。还可以回收,线程释放的内存链接在自由链表中,供下一次线程申请内存使用。

 代码展示

#pragma once
#include <iostream>
#include <vector>
#include <time.h>
#include <windows.h>
using std::cout;
using std::endl;
// 直接去堆上按页申请空间
inline static void* SystemAlloc(size_t kpage)
{
void* ptr = VirtualAlloc(0, kpage << 13, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
if (ptr == nullptr)
throw std::bad_alloc();
return ptr;
}
template<class T>
class ObjectPool
{
public:
T* New()
{
T* obj = nullptr;
// 优先把还回来内存块对象,再次重复利用
if (_freeList)
{
//头删
void* next = *((void**)_freeList);
//将链表的第一个空间给obj使用,freeList存的就是第一个小内存的地址
obj = (T*)_freeList;
_freeList = next;
}
else
{
// 剩余内存不够一个对象大小时,则重新开大块空间
if (_remainBytes < sizeof(T))
{
_remainBytes = 128 * 1024; //16页
//_memory = (char*)malloc(_remainBytes);
//SystemAlloc(x)直接向系统申请内存,x表示申请的页数
_memory = (char*)SystemAlloc(_remainBytes >> 13); //申请16页
if (_memory == nullptr)
{
throw std::bad_alloc();
}
}
obj = (T*)_memory;
//一个对象的大小 ,小于指针大小,就给一个指针大小
size_t objSize = sizeof(T) < sizeof(void*) ?
sizeof(void*) : sizeof(T);
_memory += objSize; //指针往后走一个小块空间
_remainBytes -= objSize; //每用一小块空间,剩余空间更新
}
// 定位new,显示调用T的构造函数初始化
new(obj)T;
return obj;
}
void Delete(T* obj)
{
// 显示调用析构函数清理对象
obj->~T();
// 头插,将不用的小块空间,插入自由链表中
*(void**)obj = _freeList; //*(void**) 解引用拿到 void*,在32/64位下大小为 4/8
_freeList = obj;
}
private:
char* _memory = nullptr; // 指向大块内存的指针(向系统申请的大块内存)
size_t _remainBytes = 0; // 大块内存在切分过程中剩余字节数
void* _freeList = nullptr; // 还回来过程中链接的自由链表的头指针
};
struct TreeNode
{
int _val;
TreeNode* _left;
TreeNode* _right;
TreeNode()
:_val(0)
, _left(nullptr)
, _right(nullptr)
{}
};
void TestObjectPool()
{
// 申请释放的轮次
const size_t Rounds = 5;
// 每轮申请释放多少次
const size_t N = 100000;
std::vector<TreeNode*> v1;
v1.reserve(N);
size_t begin1 = clock();
for (size_t j = 0; j < Rounds; ++j)
{
for (int i = 0; i < N; ++i)
{
v1.push_back(new TreeNode);
}
for (int i = 0; i < N; ++i)
{
delete v1[i];
}
v1.clear();
}
size_t end1 = clock();
std::vector<TreeNode*> v2;
v2.reserve(N);
ObjectPool<TreeNode> TNPool;
size_t begin2 = clock();
for (size_t j = 0; j < Rounds; ++j)
{
for (int i = 0; i < N; ++i)
{
v2.push_back(TNPool.New());
}
for (int i = 0; i < N; ++i)
{
TNPool.Delete(v2[i]);
}
v2.clear();
}
size_t end2 = clock();
cout << "new cost time:" << end1 - begin1 << endl;
cout << "object pool cost time:" << end2 - begin2 << endl;
}
int main()
{
TestObjectPool();
return 0;
}

效果演示

 可以看出,使用定长内存池,率率比使用malloc申请空间要高的多。

相关视频推荐

200行代码实现slab,开启内存池的内存管理(准备linux环境)

90分钟了解Linux内存架构,numa的优势,slab的实现,vmalloc原理

5种内存泄漏检测方式,让你重新理解C++内存管理

免费学习地址:C/C++Linux服务器开发/后台架构师

需要C/C++ Linux服务器架构师学习资料加qun579733396获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

 

高并发内存池整体框架设计

现代很多的开发环境都是多核多线程,在申请内存的场景下,必然存在激烈的锁竞争问题。malloc本身其实已经很优秀,那么我们项目的原型tcmalloc就是在多线程高并发的场景下更胜一筹,所以这次我们实现的内存池需要考虑以下几方面的问题。

1. 性能问题。

2. 多线程环境下,锁竞争问题。

3. 内存碎片问题。

thread cache:线程缓存是每个线程独有的,用于小于256KB的内存的分配,线程从这里申请内存不需要加锁,每个线程独享一个cache,这也就是这个并发线程池高效的地方。

central cache:中心缓存是所有线程所共享,thread cache是按需从central cache中获取的对象。central cache合适的时机回收thread cache中的对象,避免一个线程占用了太多的内存,而其他线程的内存吃紧,达到内存分配在多个线程中更均衡的按需调度的目的。central cache是存在竞争的,所以从这里取内存对象是需要加锁,首先这里用的是桶锁,其次只有thread cache的没有内存对象时才会找central cache,所以这里竞争不会很激烈。

page cache:页缓存是在central cache缓存上面的一层缓存,存储的内存是以页为单位存储及分配的,central cache没有内存对象时,从page cache分配出一定数量的page,并切割成定长大小的小块内存,分配给central cache。当一个span的几个跨度页的对象都回收以后,page cache会回收central cache满足条件的span对象,并且合并相邻的页,组成更大的页,缓解内存碎片的问题。

 

高并发内存池–thread cache

thread cache是哈希桶结构,每个桶是一个按桶位置映射大小的内存块对象的自由链表。每个线程都会有一个thread cache对象,这样每个线程在这里获取对象和释放对象时是无锁的。

 申请内存:

  1. 当内存申请size<=256KB,先获取到线程本地存储的thread cache对象,计算size映射的哈希桶自由链表下标i。
  2. 如果自由链表_freeLists[i]中有对象,则直接Pop一个内存对象返回。
  3. 如果_freeLists[i]中没有对象时,则批量从central cache中获取一定数量的对象,插入到自由链表并返回一个对象。

释放内存:

4. 当释放内存小于256k时将内存释放回thread cache,计算size映射自由链表桶位置i,将对象Push到_freeLists[i]。

5. 当链表的长度过长,则回收一部分内存对象到central cache。

如何保证线程可以创建属于自己的thread cache?

线程局部存储(TLS),是一种变量的存储方法,这个变量在它所在的线程内是全局可访问的,但是不能被其他线程访问到,这样就保持了数据的线程独立性。而熟知的全局变量,是所有线程都可以访问的,这样就不可避免需要锁来控制,增加了控制成本和代码复杂度。

thread cache代码框架:

#pragma once
#include "Common.h"
class ThreadCache
{
public:
// 申请和释放内存对象
void* Allocate(size_t size);
void Deallocate(void* ptr, size_t size);
// 从中心缓存获取对象
void* FetchFromCentralCache(size_t index, size_t size);
// 释放对象时,链表过长时,回收内存回到中心缓存
void ListTooLong(FreeList& list, size_t size);
private:
FreeList _freeLists[NFREELIST];
};
// TLS thread local storage(线程本地存储,每个线程都有自己的线程本地存储)
//有了TLS,线程来访问就不需要加锁了,被static修饰,只在当前文件可见
static _declspec(thread) ThreadCache* pTLSThreadCache = nullptr;
// 管理切分好的小对象的自由链表
class FreeList
{
public:
void Push(void* obj)
{
assert(obj);
// 头插
//*(void**)obj = _freeList; //*(void**)obj取obj头上4个或8个字节指向_freeList
NextObj(obj) = _freeList;
_freeList = obj;
++_size;
}
void PushRange(void* start, void* end, size_t n)
{
NextObj(end) = _freeList;
_freeList = start;
// 测试验证+条件断点
/*int i = 0;
void* cur = start;
while (cur)
{
cur = NextObj(cur);
++i;
}
if (n != i)
{
int x = 0;
}*/
_size += n;
}
void PopRange(void*& start, void*& end, size_t n)
{
assert(n >= _size);
start = _freeList;
end = start;
for (size_t i = 0; i < n - 1; ++i)
{
end = NextObj(end);
}
_freeList = NextObj(end);
NextObj(end) = nullptr;
_size -= n;
}
void* Pop()
{
assert(_freeList);
// 头删
void* obj = _freeList;
_freeList = NextObj(obj);
--_size;
return obj;
}
bool Empty()
{
return _freeList == nullptr;
}
size_t& MaxSize()
{
return _maxSize;
}
size_t Size()
{
return _size;
}
private:
void* _freeList = nullptr;
size_t _maxSize = 1;
size_t _size = 0;
};

自由链表的哈希桶跟对象大小的映射关系

// 计算对象大小的对齐映射规则
class SizeClass
{
public:
// 整体控制在最多10%左右的内碎片浪费
// [1,128] 8byte对齐 freelist[0,16)
//假设需要129字节,会分配给你144字节给你,就有15字节的浪费 15/144=0.104
// [128+1,1024] 16byte对齐 freelist[16,72)
//假设需要1025个字节,会分配给你1152字节给你,就有127字节的浪费 127/1152=0.11
// [1024+1,8*1024] 128byte对齐 freelist[72,128)
// [8*1024+1,64*1024] 1024byte对齐 freelist[128,184)
// [64*1024+1,256*1024] 8*1024byte对齐 freelist[184,208)
/*size_t _RoundUp(size_t size, size_t alignNum)
{
size_t alignSize;
if (size % alignNum != 0)
{
alignSize = (size / alignNum + 1)*alignNum;
}
else
{
alignSize = size;
}
return alignSize;
}*/
// 1-8
static inline size_t _RoundUp(size_t bytes, size_t alignNum)
{
return ((bytes + alignNum - 1) & ~(alignNum - 1));
}
static inline size_t RoundUp(size_t size)
{
if (size <= 128)
{
return _RoundUp(size, 8);
}
else if (size <= 1024)
{
return _RoundUp(size, 16);
}
else if (size <= 8*1024)
{
return _RoundUp(size, 128);
}
else if (size <= 64*1024)
{
return _RoundUp(size, 1024);
}
else if (size <= 256 * 1024)
{
return _RoundUp(size, 8*1024);
}
else //>256KB
{
return _RoundUp(size, 1<<PAGE_SHIFT);
}
}
static inline size_t _Index(size_t bytes, size_t align_shift)
{
return ((bytes + (1 << align_shift) - 1) >> align_shift) - 1;
}
// 计算映射的哪一个自由链表桶
static inline size_t Index(size_t bytes)
{
assert(bytes <= MAX_BYTES);
// 每个区间有多少个链
static int group_array[4] = { 16, 56, 56, 56 };
if (bytes <= 128){
return _Index(bytes, 3);
}
else if (bytes <= 1024){
return _Index(bytes - 128, 4) + group_array[0];
}
else if (bytes <= 8 * 1024){
return _Index(bytes - 1024, 7) + group_array[1] + group_array[0];
}
else if (bytes <= 64 * 1024){
return _Index(bytes - 8 * 1024, 10) + group_array[2] + group_array[1] + group_array[0];
}
else if (bytes <= 256 * 1024){
return _Index(bytes - 64 * 1024, 13) + group_array[3] + group_array[2] + group_array[1] + group_array[0];
}
else{
assert(false);
}
return -1;
}

相关文章:

实战项目:手把手带你实现一个高并发内存池

项目介绍 1.这个项目做的是什么&#xff1f; 当前项目是实现一个高并发的内存池&#xff0c;他的原型是google的一个开源项目tcmalloc&#xff0c;tcmalloc全称Thread-Caching Malloc&#xff0c;即线程缓存的malloc&#xff0c;实现了高效的多线程内存管理&#xff0c;用于替…...

原理这就是索引下推呀

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 索引下推是之前面试的时候遇到的一个面试题&#xff0c;当时没有答上来&#xff0c;今天来学习一下。 介绍索引下推之前先看一下MySQL基…...

个人通讯录(二)

个人通讯录&#xff08;二&#xff09; 需求&#xff1a; 通讯录&#xff08;phone&#xff09;用来保存若干个联系人的信息&#xff0c;且可以按照联系人姓名的拼音升序排序。要求通讯录提供一下功能&#xff1a; 1.添加联系人信息 2.删除指定联系人信息 3.修改指定联系人…...

DockerK8S常见面试知识

Docker docker的工作原理 docker是一个client-server结构的系统&#xff0c;docker守护进程运行在宿主机上&#xff0c;守护进程从客户端接受命令并管理运行在主机上的容器&#xff0c;容器是一个运行时环境&#xff0c;这就是我们说的集装箱 docker组成部分 1、docker cli…...

tcpdump arping nsenter

tcpdump 参数说明 tcpdump 是一款常用的网络抓包工具&#xff0c;它可以捕获网络数据包并进行分析。tcpdump 的参数非常多&#xff0c;下面是一些常用的参数说明&#xff1a; -i&#xff1a;指定要监听的网络接口&#xff0c;如 -i eth0。 any-n&#xff1a;禁用地址解析&…...

Python - 简单快速回忆基础语法

Python 是一种高级编程语言&#xff0c;易学易用 以下是 Python 基础语法的概述&#xff1a; 注释 Python 使用 # 符号来注释代码行。代码行 # 后的所有内容都将被认为是注释&#xff0c;不会被解释器执行&#xff0c;只是对代码的注释说明 # 这是一条注释 print("Hel…...

蓝牙耳机接打电话哪个比较好?接打电话最好的蓝牙耳机

技术已经发展到如此程度&#xff0c;耳机可以淹没嘈杂环境中不断出现的杂音&#xff0c;同时还能让我们在通话、音乐和娱乐方面保持清晰&#xff0c;既然如此&#xff0c;我们就来整理一下2023年适合通话和娱乐的无线耳机清单。 一、南卡小音舱Lite2蓝牙耳机 参考价格&#x…...

DeepSORT中的卡尔曼滤波

本文是看了DeepSORT方法视频之后&#xff0c;关于其中使用的卡尔曼滤波的理解 DeepSORT视频链接 首先贴几个比较好的&#xff0c;与本文由有关的几个帖子 图说卡尔曼滤波&#xff0c;一份通俗易懂的教程 卡尔曼滤波&#xff08;Kalman Filter&#xff09;原理与公式推导 卡尔…...

【Linux网络服务】SSH远程访问及控制

一、openssh服务器 1.1ssh协议 SSH&#xff08;Secure Shell&#xff09;是一种安全通道协议&#xff0c;主要用来实现字符界面的远程登录、远程 复制等功能&#xff1b; SSH 协议对通信双方的数据传输进行了加密处理&#xff0c;其中包括用户登录时输入的用户口令&#xff1…...

AutoGPT的出现,会让程序员失业吗?

最近&#xff0c;一个叫AutoGPT的模型火了&#xff0c;在GitHub上线数周Star数就直线飙升。截至目前&#xff0c;AutoGPT的Star数已经达到87k&#xff0c;马上接近90k&#xff0c;超过了PyTorch的65k。 根据AutoGPT的命名&#xff0c;就可以发现其神奇之处在于“auto”&#x…...

微信小程序php+vue 校园租房指南房屋租赁系统

本着诚信的原则&#xff0c;平台必须要掌握出租方必要的真实可信的信息&#xff0c;这样就可以防止欺诈事件的发生&#xff0c;事后也可以联系找到出租方。并且租金等各方面规范标准化&#xff0c;在这易租房诚信可信的平台让承租方与出租方充分有效对接&#xff0c;既方便了承…...

水果FL Studio21最新中文完整版下载更新及内容介绍

简单总结一下&#xff0c;本次小版本更新最重要的内容&#xff0c;我个人认为是对于M1芯片的适配。其余的比如EQ2&#xff0c;3x这些我们很熟悉的插件虽说也有更新&#xff0c;但是估计并没有特别大的改动。我个人的话会先放一段时间&#xff0c;等下次有其他更让我感兴趣的内容…...

springboot+vue小区物业管理系统(源码+文档)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的小区物业管理系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 &#x1f495;&#x1f495;作者&#xff1a;风…...

GEEer成长日记二十三:chatGPT可以帮我们提取水体边缘吗?

欢迎关注公众号&#xff1a;GEEer成长日记 目录 01 首先&#xff0c;chatGPT是什么&#xff1f; 02 进入正题&#xff0c;如何进行边缘检测&#xff1f; chatGPT推出之后&#xff0c;引发了激烈的讨论&#xff0c;今天带各位看看它在GEE方面能为我们做什么。原本想着它可以…...

程序员阿里三面无理由挂了,被HR一句话噎死,网友:这可是阿里啊

进入互联网大厂一般都是“过五关斩六将”&#xff0c;难度堪比西天取经&#xff0c;但当你真正面对这些大厂的面试时&#xff0c;有时候又会被其中的神操作弄的很是蒙圈。 近日&#xff0c;某位程序员发帖称&#xff0c;自己去阿里面试&#xff0c;三面都过了&#xff0c;却被…...

js面试题

在全局作用域下声明了一个变量 arr, 它的初始值是一个空数组 第二段代码&#xff0c;循环计数器变量i的初始值为0&#xff0c;循环条件是i的值小于2&#xff0c; 也就是说当i的值为0或者1时&#xff0c; 循环条件才能成立 才能够进入到循环体 当i的值为2时循环条件不成立&…...

SpringCloud --- Gateway服务网关

一、简介 Spring Cloud Gateway 是 Spring Cloud 的一个全新项目&#xff0c;该项目是基于 Spring 5.0&#xff0c;Spring Boot 2.0 和 Project Reactor 等响应式编程和事件流技术开发的网关&#xff0c;它旨在为微服务架构提供一种简单有效的统一的 API 路由管理方式。 二、为…...

【java】CGLIB动态代理原理

文章目录 1. 简介2. 示例3. 原理4. JDK动态代理与CGLIB动态代理区别&#xff08;面试常问&#xff09; 1. 简介 CGLIB的全称是&#xff1a;Code Generation Library。 CGLIB是一个强大的、高性能、高质量的代码生成类库&#xff0c;它可以在运行期扩展Java类与实现Java接口&a…...

ArcGIS Pro、Python、USLE、INVEST模型等多技术融合的生态系统服务构建生态安全格局

第一章、生态安全评价理论及方法介绍 一、生态安全评价简介 ​ 二、生态服务能力简介 ​ 三、生态安全格局构建研究方法简介 ​ 第二章、平台基础一、ArcGIS Pro介绍1. ArcGIS Pro简介2. ArcGIS Pro基础3. ArcGIS Pro数据编辑4. ArcGIS Pro空间分析5. 模型构建器6. ArcGIS Pro…...

openstack安装应答文件时报错处理

环境&#xff1a;centos7 在执行packstack --answer-file./answer.ini命令后&#xff0c;一般需要几分钟才能完成&#xff0c;如何在applying IP controler.pp时报错&#xff0c;需要注意以下几点&#xff1a; 0.关闭firewalld和selinux&#xff08;必须&#xff09; system…...

SpringBoot整合MongoDB

文章目录 一、环境准备二、集合操作三、文档操作3.1 实体类3.2 添加文档3.3 查询文档3.4 修改文档3.5 删除文档 提示&#xff1a;以下是本篇文章正文内容&#xff0c;MongoDB 系列学习将会持续更新 一、环境准备 ①添加 SpringData 依赖&#xff1a; <dependency><…...

线程同步机制与互斥锁

线程同步机制 在多线程编程&#xff0c;一些敏感数据不允许被多个线程同时访问&#xff0c;此时就使用同步访问技术&#xff0c;保证数据在任何时刻&#xff0c;最多有一个线程访问&#xff0c;以保证数据的完整性。也可以这里理解:线程同步&#xff0c;即当有一个线程在对内存…...

Python算法设计 - 编码加密

一、编码加密 编码加密应用十分广泛&#xff0c;特别是在大数据时代&#xff0c;也因此信息安全变得尤为重要 有时我会读到“OTP是一种无法被破解的加密方式”&#xff0c;当然&#xff0c;文末会附上一个完全被破解的OTP加密的例子 问题在于&#xff0c;人们经常会觉得完美的…...

数据结构和算法学习记录——平衡二叉树(基本介绍、平衡因子、平衡二叉树的定义、平衡二叉树的高度)

目录 基本介绍 平衡因子 平衡二叉树 平衡二叉树的高度 基本介绍 什么是平衡二叉树&#xff1f; 以一个例子来解释一下&#xff1a; 搜索树结点按不同的插入次序&#xff0c;将会导致不同的深度和平均查找长度ASL 在二叉搜索树中查找一个元素&#xff1a; &#xff08…...

【浓缩概率】浓缩概率思想帮我蒙选择题的概率大大提升!

今天在学习的时候遇到一个很有趣的思想叫作浓缩概率&#xff0c;可以帮我们快速解决一下概率悖论问题&#xff01; 什么是概率 计算概率有下面两个最简单的原则&#xff1a; 原则一、计算概率一定要有一个参照系&#xff0c;称作「样本空间」&#xff0c;即随机事件可能出现…...

两小时让你全方位的认识文件(一)

想必友友们在生活中经常会使用到各种各样的文件&#xff0c;那么我们是否了解它其中的奥秘呢&#xff0c;今天阿博就带领友友们深入地走入文件&#x1f6e9;️&#x1f6e9;️&#x1f6e9;️ 文章目录 一.为什么使用文件二.什么是文件三.文件的打开和关闭四.文件的顺序读写 一…...

基于Java+Springboot+vue网上商品订单转手系统设计和实现

基于JavaSpringbootvue网上商品订单转手系统设计和实现 博主介绍&#xff1a;5年java开发经验&#xff0c;专注Java开发、定制、远程、指导等,csdn特邀作者、专注于Java技术领域 作者主页 超级帅帅吴 Java项目精品实战案例《500套》 欢迎点赞 收藏 ⭐留言 文末获取源码联系方式…...

旅游-商场购物

标题 前言必学场景词汇及用法售货员接待促销活动选购商品询问材质与质量试穿衣服杀价修改衣服结账售后服务退换货情境常用单词化妆品类别护肤品类别护肤品功能前言 加油 必学场景词汇及用法 售货员接待 1.be of service to sb 服务某人 Hello, ma’am. Could I be of serv…...

毕业论文用什么流程图软件比较好?

在写作论文的时候使用流程图&#xff0c;会让我们的论文看起来更加有逻辑。并且流程图的图片都可以在PPT中随意插入以及使用。 基础流程图作为最为基本和简单的的流程图方式&#xff0c;一般不区分用户角色和场景&#xff0c;适用于简单场景&#xff0c;梳理单一的流程情况&am…...

算法刷题|70.爬楼梯(进阶)、322.零钱兑换、279.完全平方数

爬楼梯&#xff08;进阶&#xff09; 题目&#xff1a;假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 思路&#xff1a;本题也可以抽象成完全背包的问题&#xff0c;背包就是总共多少阶台阶&am…...