当前位置: 首页 > news >正文

DeepSORT中的卡尔曼滤波

本文是看了DeepSORT方法视频之后,关于其中使用的卡尔曼滤波的理解

DeepSORT视频链接

首先贴几个比较好的,与本文由有关的几个帖子
图说卡尔曼滤波,一份通俗易懂的教程
卡尔曼滤波(Kalman Filter)原理与公式推导
卡尔曼滤波:从入门到精通
协方差的计算:X,Y是随机变量,A,B是常数矩阵,如何证明cov(AX,BY)=Acov(X,Y)B’?
协方差的计算方法
矩阵求导
两个高斯分布乘积的理论推导
首先是视频中的一张图请添加图片描述

预测阶段

x ^ k − = A x ^ k − 1 \hat{x}_k^-=A\hat{x}_{k-1} x^k=Ax^k1
P k − = A P k − 1 A T + Q , P k − ∈ R 8 , 8 P_k^-=AP_{k-1}A^T+Q, P_k^- \in R^{8,8} Pk=APk1AT+Q,PkR8,8

更新阶段

K k = P k − C T C P k − C T + R , K k ∈ R 8 , 4 K_k=\frac{P_k^-C^T}{CP_k^-C^T+R}, K_k\in R^{8,4} Kk=CPkCT+RPkCT,KkR8,4
x k ^ = x ^ k − + K k ( y k − C x ^ k − ) , C ∈ R 4 , 8 , x ^ k − ∈ R 8 , 1 , y k ∈ R 4 , 1 \hat{x_k}=\hat{x}_k^-+K_k(y_k-C\hat{x}_k^-), C\in R^{4,8}, \hat{x}_k^-\in R^{8,1}, y_k\in R^{4,1} xk^=x^k+Kk(ykCx^k),CR4,8,x^kR8,1,ykR4,1
P k = ( I − K k C ) P k − P_k=(I-K_kC)P_k^- Pk=(IKkC)Pk

整个过程中,矩阵A和矩阵C保持不变,具体如下所示。C是状态观测矩阵,比如,如果我们现在的观测值是速度,而需要的是位置,那么C就是由速度变化到位置的变换矩阵。而在这里,C是由检测框变换到检测框的变换矩阵,因此C里都是1
请添加图片描述详细步骤:

1.获得第一帧输出的检测框参数初始化

x ^ k − \hat{x}_k^- x^k P k − P_k^- Pk首先被初始化
x ^ 0 − = [ x , y , r , h , 0 , 0 , 0 , 0 ] , ∈ R 1 , 8 \hat{x}_0^-=[x,y,r,h,0,0,0,0], \in R^{1,8} x^0=[x,y,r,h,0,0,0,0],R1,8
P k − P_k^- Pk x ^ 0 − , ∈ R 8 , 8 \hat{x}_0^-, \in R^{8,8} x^0R8,8 有关,差了一个系数,代码如下所示

# self._std_weight_position = 0.05
# self._std_weight_velocity = 0.00625
std = [2 * self._std_weight_position * measurement[3],   #2 * self._std_weight_position * measurement[3],    1e-2,    2 * self._std_weight_position * measurement[3],     10 * self._std_weight_velocity * measurement[3],    10 * self._std_weight_velocity * measurement[3],   1e-5,    10 * self._std_weight_velocity * measurement[3]] 
covariance = np.diag(np.square(std))

2.预测下一时刻(第二帧中检测框的位置,图中的Prediction过程)

x ^ k − \hat{x}_k^- x^k正常计算,
P k − 中的 Q P_k^-中的 Q Pk中的Q是一个随机噪声,其为

std_pos = [ self._std_weight_position * mean[3],     self._std_weight_position * mean[3],   1e-2,    self._std_weight_position * mean[3]] std_vel = [self._std_weight_velocity * mean[3],    self._std_weight_velocity * mean[3],    1e-5,    self._std_weight_velocity * mean[3]] motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))  mean = np.dot(self._motion_mat, mean)covariance = np.linalg.multi_dot(( self._motion_mat, covariance, self._motion_mat.T)) + motion_cov

3.完成配对,给每一个轨迹匹配一个检测框

4.更新过程(Update)

def project(self, mean, covariance):     """Project state distribution to measurement space.      Parameters     ----------     mean : ndarray         The state's mean vector (8 dimensional array).     covariance : ndarray         The state's covariance matrix (8x8 dimensional).      Returns     -------     (ndarray, ndarray)         Returns the projected mean and covariance matrix of the given state         estimate.      """     std = [ self._std_weight_position * mean[3],        self._std_weight_position * mean[3],        1e-1,         self._std_weight_position * mean[3]]    innovation_cov = np.diag(np.square(std))      mean = np.dot(self._update_mat, mean)     covariance = np.linalg.multi_dot((  self._update_mat, covariance, self._update_mat.T))     return mean, covariance + innovation_covdef update(self, mean, covariance, measurement):    """Run Kalman filter correction step.      Parameters     ----------     mean : ndarray         The predicted state's mean vector (8 dimensional).     covariance : ndarray         The state's covariance matrix (8x8 dimensional).     measurement : ndarray         The 4 dimensional measurement vector (x, y, a, h), where (x, y)         is the center position, a the aspect ratio, and h the height of the         bounding box.     Returns    -------     (ndarray, ndarray)         Returns the measurement-corrected state distribution.     """     projected_mean, projected_cov = self.project(mean, covariance)      #求解AX=b中的xchol_factor, lower = scipy.linalg.cho_factor(projected_cov, lower=True, check_finite=False)     kalman_gain = scipy.linalg.cho_solve((chol_factor,lower), np.dot(covariance, self._update_mat.T).T,         check_finite=False).T     innovation = measurement - projected_mean      new_mean = mean + np.dot(innovation, kalman_gain.T)     new_covariance = covariance - np.linalg.multi_dot((         kalman_gain, projected_cov, kalman_gain.T))     return new_mean, new_covariance

本文在卡尔曼滤波:从入门到精通的基础上,又添加了一些个人的理解

导论

卡尔曼滤波本质上是一个数据融合算法,将具有同样测量目的、来自不同传感器、(可能) 具有不同单位 (unit) 的数据融合在一起,得到一个更精确的目的测量值。事实上,卡尔曼滤波是将两个高斯分布相乘而得到的一个新的高斯分布。

简述

首先考虑一个SLAM问题

  • 运动方程: x t = F t ⋅ x t − 1 + B t ⋅ u t + ω t (1) x_t=F_t \cdot x_{t-1}+B_t\cdot u_t+\omega_t \tag{1} xt=Ftxt1+Btut+ωt(1)
  • 观测方程: z t = H t ⋅ x t + v t (2) z_t=H_t \cdot x_t+v_t \tag{2} zt=Htxt+vt(2)

其中:

x t x_t xt t t t 时刻的状态向量,包括了相机位姿、路标坐标等信息,也可能有速度、朝向等信息;
u t u_t ut为运动测量值,如加速度,转向等等;
F t F_t Ft为状态转换方程,将 t − 1 t-1 t1 时刻的状态转换至 t t t 时刻的状态;
B t B_t Bt 是控制输入矩阵,将运动测量值​ 的作用映射到状态向量上;
ω t \omega_t ωt是预测的高斯噪声,其均值为0,协方差矩阵为 Q t Q_t Qt​ 。

z t z_t zt为传感器的测量值;
H t H_t Ht为转换矩阵,它将状态向量映射到测量值所在的空间中,由于估计值和预测值可能不同,单位也不同,因此需要 H t H_t Ht来进行变换。
v t v_t vt为测量的高斯噪声,其均值为0,协方差矩阵为​ R t R_t Rt

一个小例子:
用一个在解释卡尔曼滤波时最常用的一维例子:小车追踪。如下图所示:
请添加图片描述
状态向量 x t x_t xt为小车的位置和速度:

x t = [ s t v t ] (3) x_t= \begin{bmatrix} s_t\\ v_t\\ \end{bmatrix} \tag{3} xt=[stvt](3)
其中, s t s_t st为t时刻的位移, v t v_t vt为t时刻的速度

{ s t = s t − 1 + v t ⋅ △ t + 1 2 ⋅ u t ⋅ △ t 2 v t = v t − 1 + u t ⋅ △ t (4) \begin{cases} s_t& =s_{t-1}+v_t\cdot \vartriangle t+\frac{1}{2}\cdot u_t\cdot \vartriangle t ^2\\ v_t& = v_{t-1} + u_t\cdot \vartriangle t \tag{4} \end{cases} {stvt=st1+vtt+21utt2=vt1+utt(4)

写成矩阵的形式
[ s t v t ] = [ 1 △ t 0 1 ] [ s t − 1 v t − 1 ] + [ △ t 2 2 △ t ] ⋅ u t (5) \begin{bmatrix} s_t\\ v_t\\ \end{bmatrix}= \begin{bmatrix} 1&\vartriangle t\\ 0&1\\ \end{bmatrix} \begin{bmatrix} s_{t-1}\\ v_{t-1}\\ \end{bmatrix}+ \begin{bmatrix} \frac{\vartriangle t ^2}{2}\\ \vartriangle t\\ \end{bmatrix}\cdot u_t \tag{5} [stvt]=[10t1][st1vt1]+[2t2t]ut(5)
跟之前的运动方程对比,就知道
F t = [ 1 △ t 0 1 ] , B t = [ △ t 2 2 △ t ] F_t = \begin{bmatrix} 1&\vartriangle t\\ 0&1\\ \end{bmatrix},B_t= \begin{bmatrix} \frac{\vartriangle t ^2}{2}\\ \vartriangle t\\ \end{bmatrix} Ft=[10t1],Bt=[2t2t]
上式就写为
x ^ t ∣ t − 1 = F t ⋅ x ^ t − 1 + B t ⋅ u t (6) \hat{x}_{t|t-1}=F_t\cdot\hat{x}_{t-1}+B_t\cdot u_t \tag{6} x^tt1=Ftx^t1+Btut(6)
与公式(1)的不同是,公式(1)中的值 x t x_t xt都是真实值,因此其中包含有误差,而公式(6)中的 x ^ t ∣ t − 1 \hat{x}_{t|t-1} x^tt1是由运动学方程计算出来的,因此其中不包含误差。
联立公式(1)和(6)可得:
x t − x ^ t ∣ t − 1 = F ⋅ ( x t − 1 − x ^ t ∣ t − 1 ) + ω t x_t-\hat{x}_{t|t-1}=F\cdot (x_{t-1}-\hat{x}_{t|t-1})+\omega_t xtx^tt1=F(xt1x^tt1)+ωt
接下来计算真实值 x t x_t xt的协方差矩阵,首先明确一点矩阵 x t x_t xt是一个矩阵,它的形式如下所示:
x t = [ x 1 T , x 2 T , ⋯ , x n T ] = [ x 1 , 1 x 1 , 2 ⋯ x 1 , n − 1 x 1 , n x 2 , 1 x 2 , 2 ⋯ x 2 , n − 1 x 2 , n ⋮ ⋮ ⋮ ⋮ ⋮ x m , 1 x m , 2 ⋯ x 1 , m − 1 x 1 , m ] ∈ R m , n x_t=[x_1^T,x_2^T,\cdots,x_n^T]= \begin{bmatrix} x_{1,1}&x_{1,2}&\cdots&x_{1,n-1}&x_{1,n}\\ x_{2,1}&x_{2,2}&\cdots&x_{2,n-1}&x_{2,n}\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ x_{m,1}&x_{m,2}&\cdots&x_{1,m-1}&x_{1,m}\\ \end{bmatrix}\in R^{m,n} xt=[x1T,x2T,,xnT]= x1,1x2,1xm,1x1,2x2,2xm,2x1,n1x2,n1x1,m1x1,nx2,nx1,m Rm,n
也就是说 x t x_t xt中包含了n个状态量,并且每个状态量是一个m维向量,也就是存住了t个时刻的量。
还需要注意一点的是,且
x ^ t ∣ t − 1 \hat{x}_{t|t-1} x^tt1为t时刻的状态矩阵 x t x_t xt 中不同状态量的均值。且
x ^ t ∣ t − 1 = [ m e a n ( x 1 ) m e a n ( x 2 ) ⋮ m e a n ( x n ) ] \hat{x}_{t|t-1}= \begin{bmatrix} mean(x_1)\\ mean(x_2)\\ \vdots\\ mean(x_n)\\ \end{bmatrix} x^tt1= mean(x1)mean(x2)mean(xn)
这也好理解,因为 x t x_t xt中应当是真实值,但是真实值事实上永远不可能知道的。不过呢,真实值的均值可以通过计算 x ^ t ∣ t − 1 \hat{x}_{t|t-1} x^tt1得到,并且在均值的附近有误差,也就是一个在均值附近是一个高斯分布。那么接下来求矩阵 x t x_t xt的协方差矩阵就好理解了。

P t ∣ t − 1 = E [ ( x t − x ^ t ∣ t − 1 ) ( x t − x ^ t ∣ t − 1 ) T ] = E [ ( F ( x t − x ^ t ∣ t − 1 ) + ω t ) ⋅ ( F ( x t − x ^ t ∣ t − 1 ) + ω t ) T ] = F E [ ( x t − x ^ t ∣ t − 1 ) ⋅ ( x t − x ^ t ∣ t − 1 ) T ] F T + E [ F ( x t − x ^ t ∣ t − 1 ) ⋅ ω t T ] + E [ ω t ⋅ ( F ( x t − x ^ t ∣ t − 1 ) ) T ] + E [ ω t ⋅ ω t T ] \begin{equation} \begin{aligned} P_{t|t-1}&=E[(x_t-\hat{x}_{t|t-1})(x_t-\hat{x}_{t|t-1})^T] \\ & = E[(F(x_t-\hat{x}_{t|t-1})+\omega_t)\cdot (F(x_t-\hat{x}_{t|t-1})+\omega_t)^T] \\ & =FE[(x_t-\hat{x}_{t|t-1})\cdot (x_t-\hat{x}_{t|t-1})^T]F^T\\ &+E[F(x_t-\hat{x}_{t|t-1})\cdot \omega_t^T]+E[\omega_t\cdot (F(x_t-\hat{x}_{t|t-1}))^T] \\ &+E[\omega_t \cdot \omega_t^T] \end{aligned} \tag{} \end{equation} Ptt1=E[(xtx^tt1)(xtx^tt1)T]=E[(F(xtx^tt1)+ωt)(F(xtx^tt1)+ωt)T]=FE[(xtx^tt1)(xtx^tt1)T]FT+E[F(xtx^tt1)ωtT]+E[ωt(F(xtx^tt1))T]+E[ωtωtT]()
其中 E [ F ( x t − x ^ t ∣ t − 1 ) ⋅ ω t T ] E[F(x_t-\hat{x}_{t|t-1})\cdot \omega_t^T] E[F(xtx^tt1)ωtT]表示矩阵 F ( x t − x ^ t ∣ t − 1 ) F(x_t-\hat{x}_{t|t-1}) F(xtx^tt1) ω t T \omega_t^T ωtT矩阵的协方差,且由于这两者这件并无关系,所以
E [ F ( x t − x ^ t ∣ t − 1 ) ⋅ ω t T ] = 0 E[F(x_t-\hat{x}_{t|t-1})\cdot \omega_t^T] =0 E[F(xtx^tt1)ωtT]=0同理
E [ ω t ⋅ ( F ( x t − x ^ t ∣ t − 1 ) ) T ] = 0 E[\omega_t\cdot (F(x_t-\hat{x}_{t|t-1}))^T]=0 E[ωt(F(xtx^tt1))T]=0
注意公式中的E表示的是期望,这里是由于协方差的计算方式不同,在matlab中的计算公式课本上的有所不同,这里知道就可以了。
因此就可以得到协方差的预测公式
P t ∣ t − 1 = F E [ ( x t − x ^ t ∣ t − 1 ) ⋅ ( x t − x ^ t ∣ t − 1 ) T ] F + E [ ω t ⋅ ω t T ] = F P t − 1 F T + Q t \begin{equation} \begin{aligned} P_{t|t-1}& =FE[(x_t-\hat{x}_{t|t-1})\cdot (x_t-\hat{x}_{t|t-1})^T]F+E[\omega_t \cdot \omega_t^T]\\ &=FP_{t-1}F^T+Q_t \end{aligned} \tag{} \end{equation} Ptt1=FE[(xtx^tt1)(xtx^tt1)T]F+E[ωtωtT]=FPt1FT+Qt()

由以上的步骤,我们就得到了预测值和预测值的协方差矩阵,接下来就需要将预测值与观测值进行融合了。由于预测值是符合高斯分布,观测值也符合高斯分布,那么融合的本质就是将这个两个高斯分布乘起来,乘起来还是一个高斯分布,那么乘起来之后的高斯分布的均值和方差的公式推导,见帖子两个高斯分布乘积的理论推导

现在我们有n个预测量,假设有k个观测量为
x t − x ^ t ∣ t − 1 = F ⋅ ( x t − 1 − x ^ t ∣ t − 1 ) + ω t x_t-\hat{x}_{t|t-1}=F\cdot (x_{t-1}-\hat{x}_{t|t-1})+\omega_t xtx^tt1=F(xt1x^tt1)+ωt
接下来计算真实值 x t x_t xt的协方差矩阵,首先明确一点矩阵 x t x_t xt是一个矩阵,它的形式如下所示:

z t = [ z 1 z 2 ⋮ z n ] z_t= \begin{bmatrix} z_1\\ z_2\\ \vdots\\ z_n\\ \end{bmatrix} zt= z1z2zn
x t x_t xt z t z_t zt 之间由于单位不同,因此需要使用一个转化矩阵H,即
z t = H ⋅ x t z_t=H\cdot x_t zt=Hxt写成矩阵形式就是
[ z 1 z 2 ⋮ z k ] = H ⋅ [ x 1 x 2 ⋮ x n ] \begin{bmatrix} z_1\\ z_2\\ \vdots\\ z_k\\ \end{bmatrix}= H\cdot \begin{bmatrix} x_{1}\\ x_{2}\\ \vdots\\ x_{n}\\ \end{bmatrix} z1z2zk =H x1x2xn

相关文章:

DeepSORT中的卡尔曼滤波

本文是看了DeepSORT方法视频之后,关于其中使用的卡尔曼滤波的理解 DeepSORT视频链接 首先贴几个比较好的,与本文由有关的几个帖子 图说卡尔曼滤波,一份通俗易懂的教程 卡尔曼滤波(Kalman Filter)原理与公式推导 卡尔…...

【Linux网络服务】SSH远程访问及控制

一、openssh服务器 1.1ssh协议 SSH(Secure Shell)是一种安全通道协议,主要用来实现字符界面的远程登录、远程 复制等功能; SSH 协议对通信双方的数据传输进行了加密处理,其中包括用户登录时输入的用户口令&#xff1…...

AutoGPT的出现,会让程序员失业吗?

最近,一个叫AutoGPT的模型火了,在GitHub上线数周Star数就直线飙升。截至目前,AutoGPT的Star数已经达到87k,马上接近90k,超过了PyTorch的65k。 根据AutoGPT的命名,就可以发现其神奇之处在于“auto”&#x…...

微信小程序php+vue 校园租房指南房屋租赁系统

本着诚信的原则,平台必须要掌握出租方必要的真实可信的信息,这样就可以防止欺诈事件的发生,事后也可以联系找到出租方。并且租金等各方面规范标准化,在这易租房诚信可信的平台让承租方与出租方充分有效对接,既方便了承…...

水果FL Studio21最新中文完整版下载更新及内容介绍

简单总结一下,本次小版本更新最重要的内容,我个人认为是对于M1芯片的适配。其余的比如EQ2,3x这些我们很熟悉的插件虽说也有更新,但是估计并没有特别大的改动。我个人的话会先放一段时间,等下次有其他更让我感兴趣的内容…...

springboot+vue小区物业管理系统(源码+文档)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的小区物业管理系统。项目源码以及部署相关请联系风歌,文末附上联系信息 。 💕💕作者:风…...

GEEer成长日记二十三:chatGPT可以帮我们提取水体边缘吗?

欢迎关注公众号:GEEer成长日记 目录 01 首先,chatGPT是什么? 02 进入正题,如何进行边缘检测? chatGPT推出之后,引发了激烈的讨论,今天带各位看看它在GEE方面能为我们做什么。原本想着它可以…...

程序员阿里三面无理由挂了,被HR一句话噎死,网友:这可是阿里啊

进入互联网大厂一般都是“过五关斩六将”,难度堪比西天取经,但当你真正面对这些大厂的面试时,有时候又会被其中的神操作弄的很是蒙圈。 近日,某位程序员发帖称,自己去阿里面试,三面都过了,却被…...

js面试题

在全局作用域下声明了一个变量 arr, 它的初始值是一个空数组 第二段代码,循环计数器变量i的初始值为0,循环条件是i的值小于2, 也就是说当i的值为0或者1时, 循环条件才能成立 才能够进入到循环体 当i的值为2时循环条件不成立&…...

SpringCloud --- Gateway服务网关

一、简介 Spring Cloud Gateway 是 Spring Cloud 的一个全新项目,该项目是基于 Spring 5.0,Spring Boot 2.0 和 Project Reactor 等响应式编程和事件流技术开发的网关,它旨在为微服务架构提供一种简单有效的统一的 API 路由管理方式。 二、为…...

【java】CGLIB动态代理原理

文章目录 1. 简介2. 示例3. 原理4. JDK动态代理与CGLIB动态代理区别(面试常问) 1. 简介 CGLIB的全称是:Code Generation Library。 CGLIB是一个强大的、高性能、高质量的代码生成类库,它可以在运行期扩展Java类与实现Java接口&a…...

ArcGIS Pro、Python、USLE、INVEST模型等多技术融合的生态系统服务构建生态安全格局

第一章、生态安全评价理论及方法介绍 一、生态安全评价简介 ​ 二、生态服务能力简介 ​ 三、生态安全格局构建研究方法简介 ​ 第二章、平台基础一、ArcGIS Pro介绍1. ArcGIS Pro简介2. ArcGIS Pro基础3. ArcGIS Pro数据编辑4. ArcGIS Pro空间分析5. 模型构建器6. ArcGIS Pro…...

openstack安装应答文件时报错处理

环境:centos7 在执行packstack --answer-file./answer.ini命令后,一般需要几分钟才能完成,如何在applying IP controler.pp时报错,需要注意以下几点: 0.关闭firewalld和selinux(必须) system…...

SpringBoot整合MongoDB

文章目录 一、环境准备二、集合操作三、文档操作3.1 实体类3.2 添加文档3.3 查询文档3.4 修改文档3.5 删除文档 提示&#xff1a;以下是本篇文章正文内容&#xff0c;MongoDB 系列学习将会持续更新 一、环境准备 ①添加 SpringData 依赖&#xff1a; <dependency><…...

线程同步机制与互斥锁

线程同步机制 在多线程编程&#xff0c;一些敏感数据不允许被多个线程同时访问&#xff0c;此时就使用同步访问技术&#xff0c;保证数据在任何时刻&#xff0c;最多有一个线程访问&#xff0c;以保证数据的完整性。也可以这里理解:线程同步&#xff0c;即当有一个线程在对内存…...

Python算法设计 - 编码加密

一、编码加密 编码加密应用十分广泛&#xff0c;特别是在大数据时代&#xff0c;也因此信息安全变得尤为重要 有时我会读到“OTP是一种无法被破解的加密方式”&#xff0c;当然&#xff0c;文末会附上一个完全被破解的OTP加密的例子 问题在于&#xff0c;人们经常会觉得完美的…...

数据结构和算法学习记录——平衡二叉树(基本介绍、平衡因子、平衡二叉树的定义、平衡二叉树的高度)

目录 基本介绍 平衡因子 平衡二叉树 平衡二叉树的高度 基本介绍 什么是平衡二叉树&#xff1f; 以一个例子来解释一下&#xff1a; 搜索树结点按不同的插入次序&#xff0c;将会导致不同的深度和平均查找长度ASL 在二叉搜索树中查找一个元素&#xff1a; &#xff08…...

【浓缩概率】浓缩概率思想帮我蒙选择题的概率大大提升!

今天在学习的时候遇到一个很有趣的思想叫作浓缩概率&#xff0c;可以帮我们快速解决一下概率悖论问题&#xff01; 什么是概率 计算概率有下面两个最简单的原则&#xff1a; 原则一、计算概率一定要有一个参照系&#xff0c;称作「样本空间」&#xff0c;即随机事件可能出现…...

两小时让你全方位的认识文件(一)

想必友友们在生活中经常会使用到各种各样的文件&#xff0c;那么我们是否了解它其中的奥秘呢&#xff0c;今天阿博就带领友友们深入地走入文件&#x1f6e9;️&#x1f6e9;️&#x1f6e9;️ 文章目录 一.为什么使用文件二.什么是文件三.文件的打开和关闭四.文件的顺序读写 一…...

基于Java+Springboot+vue网上商品订单转手系统设计和实现

基于JavaSpringbootvue网上商品订单转手系统设计和实现 博主介绍&#xff1a;5年java开发经验&#xff0c;专注Java开发、定制、远程、指导等,csdn特邀作者、专注于Java技术领域 作者主页 超级帅帅吴 Java项目精品实战案例《500套》 欢迎点赞 收藏 ⭐留言 文末获取源码联系方式…...

旅游-商场购物

标题 前言必学场景词汇及用法售货员接待促销活动选购商品询问材质与质量试穿衣服杀价修改衣服结账售后服务退换货情境常用单词化妆品类别护肤品类别护肤品功能前言 加油 必学场景词汇及用法 售货员接待 1.be of service to sb 服务某人 Hello, ma’am. Could I be of serv…...

毕业论文用什么流程图软件比较好?

在写作论文的时候使用流程图&#xff0c;会让我们的论文看起来更加有逻辑。并且流程图的图片都可以在PPT中随意插入以及使用。 基础流程图作为最为基本和简单的的流程图方式&#xff0c;一般不区分用户角色和场景&#xff0c;适用于简单场景&#xff0c;梳理单一的流程情况&am…...

算法刷题|70.爬楼梯(进阶)、322.零钱兑换、279.完全平方数

爬楼梯&#xff08;进阶&#xff09; 题目&#xff1a;假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 思路&#xff1a;本题也可以抽象成完全背包的问题&#xff0c;背包就是总共多少阶台阶&am…...

【MCS-51】51单片机结构原理

至今为止&#xff0c;MCS-51系列单片机有许多种型号的产品&#xff1a;其中又分为普通型51&#xff08;8031、8051、89S51&#xff09;和增强型52&#xff08;8032、8052、89S52等&#xff09;。它们最大的区别在于存储器配置各有差异。下面我举例子的都是8051这一系列的单片机…...

软件测试技术之如何编写测试用例(3)

14、对于类似于手机版淘宝这种软件&#xff0c;它拥有客户端&#xff0c;服务器端还有一个后台管理系统类似于进销存管理系统&#xff0c;我如何设计测试用例才能保证功能的完全覆盖&#xff1f;他们之间的交互如何设计测试用例&#xff1f; 专家分析&#xff1a;对于复合型的…...

移远通信笔试题

限时60分钟 1.下列关于栈叙述正确的是 A A) 栈顶元素最先能被删除 B&#xff09;栈顶元素最后才能被删除 C&#xff09;栈底元素永远不能被删除 D&#xff09;以上三种都不对 在栈中&#xff0c;最后被压入的元素总是在栈顶上方&#xff0c;而栈顶元素总是最先被弹出的元…...

python算法中的机器学习算法之监督学习知识点(详解)

目录 学习目标: 学习内容: Ⅰ. 线性回归(Linear Regression) Ⅱ. 逻辑回归(Logistic Regression)...

Flink主要有两种基础类型的状态:keyed state

Flink主要有两种基础类型的状态&#xff1a;keyed state 和operator state。 Keyed State Keyed State总是和keys相关&#xff0c;并且只能用于KeyedStream上的函数和操作。 你可以将Keyed State视为是已经被分片或分区的Operator State&#xff0c;每个key都有且仅有一个状态分…...

js录音支持h5 pc ios android

最近在做h5录音的页面要求可暂停录音,继续录音&#xff0c;写好后发现不兼容ios,无奈只能找兼容方法&#xff0c;找了一天也没找到&#xff0c;后来看到一个网站在ios上可以暂停录音&#xff0c;后来引入他的js文件果然能用了 网站放下面了 Recorder H5: 用于html5网页中的前…...

mybatis04-mybatis缓存、分页插件、注解开发(一对一、多对一、多对多)

mybatis04 mybatis 缓存 一、mybatis 缓存概述 1、缓存 ​ 缓存 是存在于内存中的临时数据&#xff0c;使用缓存的目的是&#xff1a;减少和数据库的交互次数&#xff0c;提高执行效率。 2、mybatis 缓存 ​ mybatis 与 大多数的持久层框架一样&#xff0c;提供了缓存策略…...