leetcode两数、三数、四数之和
如有错误,感谢不吝赐教、交流
文章目录
- 两数之和
- 题目
- 方法一:暴力两重循环(不可取)
- 方法二:HashMap空间换时间
- 三数之和
- 题目
- 方法一:当然是暴力破解啦
- 方法二:同两数之和的原理,借助HashMap和HashSet实现
- 四数之和
两数之和
题目
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
方法一:暴力两重循环(不可取)
方法二:HashMap空间换时间
借助HashMap实现,如下图示例

public int[] twoSum(int[] nums, int target) {HashMap<Integer, Integer> map = new HashMap<>();map.put(target - nums[0], 0);int res [] = new int[2];for (int i = 1; i < nums.length; i++) {Integer index = map.get(nums[i]);if (index != null) {res[0] = (int) index;res[1] = i;break;} else {map.put(target - nums[i], i);}}return res;}
三数之和
题目
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请
你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。 这里尤其注意一下,不能包含重复的三元组(借助HashSet实现比较简单,不过有点费时间和空间)
方法一:当然是暴力破解啦
直接使用三重for循环暴力破解,太费时间,不可取。
方法二:同两数之和的原理,借助HashMap和HashSet实现
要求是三个数之和,这里将其中一个数保存到HashMap中,再使用双重for循环遍历,即可获得三个数的答案
原理是和两数之和的原理一样。
这里需要注意,会出现重复的组合结果,如[0, 0,0,0],可能得组合就有[0,0,0], [0,0,0], [0,0,0]
显然这里重复了,于是使用HashSet去重。
// 先对nums排序Arrays.sort(nums);HashMap<Integer, Integer> map = new HashMap<>();HashSet<List<Integer>> hashSet = new HashSet<>();map.put(-nums[0], 1);for (int i = 1; i < nums.length - 1; i++) {for (int j = i + 1; j < nums.length; j++) {int i1 = nums[i] + nums[j];Integer map_val = map.get(i1);if (map_val != null) {List<Integer> integers = new ArrayList<>();integers.add(-i1);integers.add(nums[i]);integers.add(nums[j]);hashSet.add(integers);}}map.put(-nums[i], 1);}List<List<Integer>> lists = new ArrayList<>(hashSet);return lists;
四数之和
方法原理和上面一样,借助HashMap和三重for循环实现
ps:计划每日更新一篇博客,今日2023-04-22,日更第六天,昨日更新:LeetCode6_N字形变换
相关文章:
leetcode两数、三数、四数之和
如有错误,感谢不吝赐教、交流 文章目录 两数之和题目方法一:暴力两重循环(不可取)方法二:HashMap空间换时间 三数之和题目方法一:当然是暴力破解啦方法二:同两数之和的原理,借助Has…...
使用Docker部署wikitten个人知识库
使用Docker部署wikitten个人知识库 一、wikitten介绍1.wikitten简介2.wikitten特点 二、本地实践环境介绍三、本地环境检查1.检查Docker服务状态2.检查Docker版本 四、部署wikitten个人知识库1.创建数据目录2.下载wikitten镜像3.创建wikitten容器4.查看wikitten容器状态5.检查w…...
【MYSQL】Java的JDBC编程(idea连接数据库)
1. 配置 (1)新建一个项目 (2)Build System 那里选择Maven,下一步Create (3)配置pom.xml文件 首先查看自己的MYSQL版本:进入MySQL命令窗口 我的MYSQL版本是8.0版本的. 下一步,…...
机器学习——主成分分析法(PCA)概念公式及应用python实现
机器学习——主成分分析法(PCA) 文章目录 机器学习——主成分分析法(PCA)一、主成分分析的概念二、主成分分析的步骤三、主成分分析PCA的简单实现四、手写体识别数字降维 一、主成分分析的概念 主成分分析(PCA&#x…...
手写axios源码系列二:创建axios函数对象
文章目录 一、模块化目录介绍二、创建 axios 函数对象1、创建 axios.js 文件2、创建 defaults.js 文件3、创建 _Axios.js 文件4、总结 当前篇章正式进入手写 axios 源码系列,我们要真枪实弹的开始写代码了。 因为 axios 源码的代码量比较庞大,所以我们这…...
HTB-Time
HTB-Time 信息收集80端口 立足pericles -> root 信息收集 80端口 有两个功能,一个是美化JSON数据。 一个是验证JSON,并且输入{“abc”:“abc”}之类的会出现报错。 Validation failed: Unhandled Java exception: com.fasterxml.jackson.core.JsonPa…...
零基础C/C++开发到底要学什么?
作者:黑马程序员 链接:https://www.zhihu.com/question/597037176/answer/2999707086 先和我一起看看,C/C学完了可以做什么: 软件工程师:负责设计、开发、测试和维护各类型的软件应用程序;游戏开发&#x…...
OpenStack中的CPU与内存超分详解
目录 什么是超分 CPU超分 查看虚拟机虚拟CPU运行在哪些物理CPU上 内存超分 内存预留 内存共享 如何设置内存预留和内存共享 全局设置 临时设置 什么是超分 超分通常指的是CPU或者GPU的分区或者分割,以在一个物理CPU或GPU内模拟多个逻辑CPU或GPU的功能。这…...
main.m文件解析--@autoreleasepool和UIApplicationMain
iOS 程序入口UIApplicationMain详解,相信大家新建一个工程的时候都会看到一个main.m文件,只不过我们很少了解它,现在我们分析一下它的作用是什么? 一、main.m文件 int main(int argc, char * argv[]) {autoreleasepool {return …...
C语言复习之顺序表(十五)
📖作者介绍:22级树莓人(计算机专业),热爱编程<目前在c阶段>——目标C、Windows,MySQL,Qt,数据结构与算法,Linux,多线程,会持续分享…...
学系统集成项目管理工程师(中项)系列10_立项管理
1. 系统集成项目管理至关重要的一个环节 2. 重点在于是否要启动一个项目,并为其提供相应的预算支持 3. 项目建议 3.1. Request for Proposal, RFP 3.2. 立项申请 3.3. 项目建设单位向上级主管部门提交的项目申请文件,是对拟建项目提出的总体设想 3…...
电视盒子哪个好?数码小编盘点2023电视盒子排行榜
随着网络剧的热播,电视机又再度受宠,电视盒子也成为不可缺少的小家电。但面对复杂的参数和品牌型号,挑选时不知道电视盒子哪款最好,小编根据销量和用户评价整理半个月后盘点了电视盒子排行榜前五,对电视盒子哪个好感兴…...
flink动态表的概念详解
目录 前言🚩 动态表和持续不断查询 stream转化成表 连续查询 查询限制 表转化为流 前言🚩 传统的数据库SQL和实时SQL处理的差别还是很大的,这里简单列出一些区别: 尽管存在这些差异,但使用关系查询和SQL处理流并…...
ArcGIS Pro用户界面
目录 1 功能区 1.1 快速访问工具栏 1.2 自定义快速访问工具栏 1.3 自定义功能区选项 1.3.1 添加组和命令 1.3.2 添加新选项卡 2 视图 3 用户界面排列 编辑 4 窗格 4.1 内容窗格 4.2 目录窗格 4.3 目录视图(类似ArcCatalog) 4.4 浏览对话框…...
HDCTF 2023 Pwn WriteUp
Index 前言Pwnner分析EXP: KEEP_ON分析EXP: Minions分析EXP: 后记: 前言 本人是菜狗,比赛的时候只做出来1题,2题有思路但是不会,还是太菜了。 栈迁移还是不会,但又都是栈迁移的题,真头大。得找时间好好学学…...
【 Spring 事务 】
文章目录 一、为什么需要事务(简单回顾)二、MySQL 中的事务使⽤三、Spring 中事务的实现3.1 Spring 编程式事务(手动事务)3.2 Spring 声明式事务(自动事务)3.2.1 Transactional 作⽤范围3.2.2 Transactional 参数说明3.2.3 Transactional 不进行事务回滚的情况3.2.4 Transactio…...
【刷题之路】LeetCode 203. 移除链表元素
【刷题之路】LeetCode 203. 移除链表元素 一、题目描述二、解题1、方法1——在原链表上动刀子1.1、思路分析1.2、代码实现 2、方法2——使用额外的链表2.1、思路分析2.2、代码实现 一、题目描述 原题连接: 203. 移除链表元素 题目描述: 给你一个链表的…...
关于Open Shift(OKD) 中 用户认证、权限管理、SCC 管理的一些笔记
写在前面 因为参加考试,会陆续分享一些 OpenShift 的笔记博文内容为 openshift 用户认证和权限管理以及 scc 管理相关笔记学习环境为 openshift v3 的版本,有些旧这里如果专门学习 openshift ,建议学习 v4 版本理解不足小伙伴帮忙指正 对每个…...
活动文章测试(勿删)
大家好! 我是CSDN官方博客! 恭喜你正式加入CSDN博客,迈上技术成神之路~~ 路漫漫其修远兮——身为技术人,求索之路道阻且艰,但一万次的翘首却比不过一次的前行。 现在,就来开启你的个人博客,发布…...
Windows下 批量重命名文件【bat实现】
目录 前言 一、Windows简单实现重命名 二、使用命令行和Excel实现重命名 前言 在实际应用中,我们经常会遇到将指定文件夹下的文件重命名,以便程序读写。 本文介绍了两种方式,都是在Windows系统中自带的重命名方式。 一、Windows简单实现…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
