基于ResNet-attention的负荷预测
一、attention机制
注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理、语音识别还是自然语言处理的各种不同类型的任务中,都很容易遇到注意力模型的身影。从注意力模型的命名方式看,很明显其借鉴了人类的注意力机制。我们来看下面的一张图片。
图中形象化展示了人类在看到一副图像时是如何高效分配有限的注意力资源的,其中红色区域表明视觉系统更关注的目标,很明显对于图1所示的场景,人们会把注意力更多投入到人的脸部,文本的标题以及文章首句等位置。
视觉注意力机制是人类视觉所特有的大脑信号处理机制。人类视觉通过快速扫描全局图像,获得需要重点关注的目标区域,也就是一般所说的注意力焦点,而后对这一区域投入更多注意力资源,以获取更多所需要关注目标的细节信息,而抑制其他无用信息。深度学习中的注意力机制的核心就是让网络关注其更需要更重要的地方,注意力机制就是实现网络自适应的一个方式。
注意力机制的本质就是定位到感兴趣的信息,抑制无用信息,结果通常都是以概率图或者概率特征向量的形式展示,从原理上来说,主要分为空间注意力模型,通道注意力模型,空间和通道混合注意力模型三种。那么今天我们主要介绍通道注意力机制。
1、通道注意力机制
通道注意力机制最经典的应用就是SENet(Sequeeze and Excitation Net),它通过建模各个特征通道的重要程度,然后针对不同的任务增强或者抑制不同的通道,原理图如下。
在正常的卷积操作后分出了一个旁路分支,首先进行Squeeze操作(即图中Fsq(·)),它将空间维度进行特征压缩,即每个二维的特征图变成一个实数,相当于具有全局感受野的池化操作,特征通道数不变。然后是Excitation操作(即图中的Fex(·)),它通过参数w为每个特征通道生成权重,w被学习用来显式地建模特征通道间的相关性。在文章中,使用了一个2层bottleneck结构(先降维再升维)的全连接层+Sigmoid函数来实现。得到了每一个特征通道的权重之后,就将该权重应用于原来的每个特征通道,基于特定的任务,就可以学习到不同通道的重要性。作为一种通用的设计思想,它可以被用于任何现有网络,具有较强的实践意义。
综上通道注意力计算公式总结为:
关于通道注意力机制的原理就介绍到这里,想要了解具体原理的,大家可以参考文献:Squeeze-and-Excitation Networks
二、代码实战
clc clear close all load Train.mat % load Test.mat Train.weekend = dummyvar(Train.weekend); Train.month = dummyvar(Train.month); Train = movevars(Train,{'weekend','month'},'After','demandLag'); Train.ts = []; Train(1,:) =[]; y = Train.demand; x = Train{:,2:5}; [xnorm,xopt] = mapminmax(x',0,1); [ynorm,yopt] = mapminmax(y',0,1); xnorm = xnorm(:,1:1000); ynorm = ynorm(1:1000); k = 24; % 滞后长度 % 转换成2-D image for i = 1:length(ynorm)-k Train_xNorm{:,i} = xnorm(:,i:i+k-1);Train_yNorm(i) = ynorm(i+k-1);Train_y{i} = y(i+k-1); end Train_x = Train_xNorm'; ytest = Train.demand(1001:1170); xtest = Train{1001:1170,2:5}; [xtestnorm] = mapminmax('apply', xtest',xopt); [ytestnorm] = mapminmax('apply',ytest',yopt); % xtestnorm = [xtestnorm; Train.weekend(1001:1170,:)'; Train.month(1001:1170,:)']; xtest = xtest'; for i = 1:length(ytestnorm)-kTest_xNorm{:,i} = xtestnorm(:,i:i+k-1);Test_yNorm(i) = ytestnorm(i+k-1);Test_y(i) = ytest(i+k-1); end Test_x = Test_xNorm'; x_train = table(Train_x,Train_y'); x_test = table(Test_x); %% 训练集和验证集划分 % TrainSampleLength = length(Train_yNorm); % validatasize = floor(TrainSampleLength * 0.1); % Validata_xNorm = Train_xNorm(:,end - validatasize:end,:); % Validata_yNorm = Train_yNorm(:,TrainSampleLength-validatasize:end); % Validata_y = Train_y(TrainSampleLength-validatasize:end); % % Train_xNorm = Train_xNorm(:,1:end-validatasize,:); % Train_yNorm = Train_yNorm(:,1:end-validatasize); % Train_y = Train_y(1:end-validatasize); %% 构建残差神经网络 lgraph = layerGraph(); tempLayers = [imageInputLayer([4 24 1],"Name","imageinput")convolution2dLayer([3 3],32,"Name","conv","Padding","same")]; lgraph = addLayers(lgraph,tempLayers); tempLayers = [batchNormalizationLayer("Name","batchnorm")reluLayer("Name","relu")]; lgraph = addLayers(lgraph,tempLayers); tempLayers = [additionLayer(2,"Name","addition")convolution2dLayer([3 3],32,"Name","conv_1","Padding","same")]; lgraph = addLayers(lgraph,tempLayers); tempLayers = [batchNormalizationLayer("Name","batchnorm_1")reluLayer("Name","relu_1")]; lgraph = addLayers(lgraph,tempLayers); tempLayers = [additionLayer(2,"Name","addition_1")convolution2dLayer([3 3],32,"Name","conv_2","Padding","same")]; lgraph = addLayers(lgraph,tempLayers); tempLayers = [batchNormalizationLayer("Name","batchnorm_2")reluLayer("Name","relu_2")]; lgraph = addLayers(lgraph,tempLayers); tempLayers = [additionLayer(2,"Name","addition_2")convolution2dLayer([3 3],32,"Name","conv_3","Padding","same")]; lgraph = addLayers(lgraph,tempLayers); tempLayers = [batchNormalizationLayer("Name","batchnorm_3")reluLayer("Name","relu_3")]; lgraph = addLayers(lgraph,tempLayers); tempLayers = [additionLayer(2,"Name","addition_4")sigmoidLayer("Name","sigmoid")]; lgraph = addLayers(lgraph,tempLayers); tempLayers = multiplicationLayer(2,"Name","multiplication"); lgraph = addLayers(lgraph,tempLayers); tempLayers = [additionLayer(3,"Name","addition_3")fullyConnectedLayer(32,"Name","fc1")fullyConnectedLayer(16,"Name","fc2")fullyConnectedLayer(1,"Name","fc3")regressionLayer("Name","regressionoutput")]; lgraph = addLayers(lgraph,tempLayers); % 清理辅助变量 clear tempLayers; plot(lgraph); analyzeNetwork(lgraph); %% 设置网络参数 maxEpochs = 100; miniBatchSize = 32; options = trainingOptions('adam', ...'MaxEpochs',maxEpochs, ...'MiniBatchSize',miniBatchSize, ...'InitialLearnRate',0.005, ...'GradientThreshold',1, ...'Shuffle','never', ...'Plots','training-progress',...'Verbose',0); net = trainNetwork(x_train,lgraph ,options); Predict_yNorm = predict(net,x_test); Predict_y = double(Predict_yNorm); plot(Test_y) hold on plot(Predict_y) legend('真实值','预测值')
训练迭代图:
试集预测曲线图
完整代码
相关文章:

基于ResNet-attention的负荷预测
一、attention机制 注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理、语音识别还是自然语言处理的各种不同类型的任务中,都很容易遇到注意力模型的身影。从注意力模型的命名方式看,很明显其借鉴了人类的注意力机制。我们来看…...
华为校招机试 - 批量初始化次数(20230426)
题目描述 某部门在开发一个代码分析工具,需要分析模块之间的依赖关系,用来确定模块的初始化顺序是否有循环依赖等问题。 "批量初始化”是指一次可以初始化一个或多个模块。 例如模块1依赖模块2,模块3也依赖模块2,但模块1和3没有依赖关系,则必须先"批量初始化”…...

WhatsApp CRM:通过 CRM WhatsApp 集成向客户发送消息
WhatsApp CRM:通过 CRM WhatsApp 集成向客户发送消息 你是否在寻找一个支持WhatsApp整合的CRM?或者,你想将WhatsApp与你当前的CRM整合?这篇文章将回答你所有的问题。我们将首先了解什么是WhatsApp CRM,以及你需要知道…...

SOLIDWORKS Electrical无缝集成电气和机械设计
集成电气系统设计SOLIDWORKS⑧Electrical 解决方案借助专为工程专业设计的特定工具简化了电气铲品设计,并借助直观的用户界面更快地设计嵌入式电气系统。 与SOLIDWORKS 3DCAD的原生集成能提供更好的协作与生产效率,同时减少产品延迟、提高设计的一致性与…...

Numpy从入门到精通——数组变形|合并数组
这个专栏名为《Numpy从入门到精通》,顾名思义,是记录自己学习numpy的学习过程,也方便自己之后复盘!为深度学习的进一步学习奠定基础!希望能给大家带来帮助,爱睡觉的咋祝您生活愉快! 这一篇介绍《…...

DJ4-5 路由算法:LS 和 DV
目录 一、迪杰斯特拉算法 1. 术语定义 2. 算法描述 3. 举例说明 4. 构建从源节点到目的节点的路径 5. 构建最低费用路径树 6. 构建转发表 二、距离向量路由算法 1. 术语定义 2. 举例说明 3. 距离向量表 4. 更新距离向量表 5. 举例说明 三、距离向量路由算法 PLUS…...

python图像处理之形态学梯度、礼帽、黑帽
文章目录 简介实战 简介 腐蚀和膨胀是图像形态学处理的基本运算,这两种运算的复合运算构成了开和闭,而腐蚀、膨胀与原图之间的加减操作,则构成了形态学梯度、礼帽和黑帽计算。 由于这几种函数均基于腐蚀和膨胀,所以其参数均与开…...

千万级直播系统后端架构设计
1、架构方面 1.1 基本 该图是某大型在线演唱会的直播媒体架构简图。 可以看出一场大型活动直播涵盖的技术方案点非常庞杂,本节接下来的内容我们将以推拉流链路、全局智能调度、流量精准调度以及单元化部署,对这套直播方案做一个展开介绍。 1.2 推拉流链…...
ImageJ 用户手册——第五部分(菜单命令File,Edit)
这里写目录标题 菜单命令26. File26.1 New26.1.1 Image26.1.2 Hyperstack26.1.3 Text Window26.1.4 Internal Clipboard26.1.5 System Clipboard 26.2 Open26.3 Open Next26.4 Open Samples26.5 Open Recent26.6 Import26.6.1 Image Sequence26.6.2 Raw26.6.3 LUT26.6.4 Text I…...
nmap常用命令
一、nmap简介 Nmap,也就是Network Mapper。nmap是一个网络连接端扫描软件,用来扫描网上电脑开放的网络连接端。确定哪些服务运行在哪些连接端,并且推断计算机运行哪个操作系统(这是亦称 fingerprinting)。它是网络管理员必用的软件之一&…...
常用adb 命令
目录 一、常用简单的adb命令: 二、adb shell pm基本的命令: 三、adb shell am基本的命令: 四、关闭某项进程,以monkey为例: 五、最近12小时的资源情况: 六、录制屏幕命令: 七、截图命令&am…...
后端开发常犯的问题(Java版)
数据类型使用不当 ——钱相关的计算,数据类型必须用BigDecimal 1.很多开发在做金额计算时会使用double数据类型,自测一些常用场景认为double是满足需求的因而图省事直接使用此数据类型。使用double类型存在金额精度丢失的风险,涉及到钱的数据…...
Vue CLI 部署
通用指南 如果你用 Vue CLI 处理静态资源并和后端框架一起作为部署的一部分,那么你需要的仅仅是确保 Vue CLI 生成的构建文件在正确的位置,并遵循后端框架的发布方式即可。 如果你独立于后端部署前端应用——也就是说后端暴露一个前端可访问的 API&…...

客快物流大数据项目(一百一十七):网关 Spring Cloud Gateway
文章目录 网关 Spring Cloud Gateway 一、简介 1、功能特性...

fMRI时间序列振幅和相位对功能连接分析的影响
导读 目的:fMRI领域的一些研究使用瞬时相位(IP)表征(源自BOLD时间序列的解析表征)考察了脑区之间的同步性。本研究假设来自不同脑区的瞬时振幅(IA)表征可以为脑功能网络提供额外的信息。为此,本研究探索了静息态BOLD fMRI信号的这种表征,用于…...

备战2个月,四轮面试拿下字节offer...
背景 菜 J 一枚,本硕都是计算机(普通二本),2021 届应届硕士,软件测试方向。个人也比较喜欢看书,技术书之类的都有看,最后下面也会推荐一些经典书籍。 先说一下春招结果:拿下了四个…...

关于Nginx
一、常见的“服务器中间件”(即http server-web中间件)有哪些 Tomcat、Jboss、Apache、WeBlogic、Jetty、webSphere、Nginx、IIS 二、nginx的特点 1.性能高,能承受5万并发每秒; 2.内存、磁盘,读取消耗空间小。 三、…...
tensorflow中的共享变量
(1)用途 在构建模型时,需要使用tf.Variable来创建一个变量(也可以理解成节点)。但在某种情况下,一个模型需要使用其他模型创建的变量,两个模型一起训练。此时需要用到共享变量。这时就是通过引…...
flink cep数据源keyby union后 keybe失效
问题背景:cep模板 对数据源设置分组条件后,告警的数据,和分组条件对不上, 掺杂了,其他的不同组的数据,产生了告警 策略条件: 选择了两个kafka的的topic的数据作为数据源, 对A 数据…...
python中的继承与多态,dir()函数
Python继承 在继承关系中,已有的、设计好的类称为父类或基类,新设计的类称为子类或派生类。派生类可以继承父类的公有成员,但是不能继承其私有成员。如果需要在派生类中调用基类的方法,可以使用内置函数super()或者通过“基类名.…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...