当前位置: 首页 > news >正文

Python超矩形

文章目录

    • 距离函数
    • 矩形分割

Rectanglescipy.spatial中封装的类,其构造函数只需输入最小值和最大值的数组即可,并且可通过内置的 volume方法计算广义的体积。

from scipy.spatial import Rectanglerec = Rectangle((0,0), (5,5))
print(rec.maxes)    # [5. 5.]
print(rec.mins)     # [0. 0.]
print(rec.volume()) # 25
rec3 = Rectangle((0,0,0), (5,5,5))
print(rec3.volume())    # 125

距离函数

通过min_distance_point/max_distance_point可以计算某点到矩形内部的最近/最远距离

print(rec.min_distance_point((3,3)))
# 0.0
print(rec.max_distance_point((3,3)))
# 4.242640687119285

由于(3,3)在矩形内部,所以最小距离为0;而最大距离则位于(0,0)处。

通过min_distance_rectangle/max_distance_rectangle方法可以计算一个矩形和另一个矩形之间的最小/最大距离

rec2 = Rectangle((5,5),(10,10))
rec.max_distance_rectangle(rec2, 2)
# 14.142135623730951
rec.min_distance_rectangle(rec2, 2)
# 0.0

由于两个矩形存在交点,所以最近距离为0,而最远距离则在(0,0), (10,10)之间。

这4个距离函数均采用闵可夫斯基距离的定义,默认阶数为2,通过第二个参数p,可以修改距离的定义。对于点 x , y x,y x,y而言,具体的距离公式为

d p = ∑ i ∣ x i − y i ∣ p p d_p = \sqrt[p]{\sum_i \vert x_i-y_i\vert^p} dp=pixiyip

>>> rec.max_distance_point((3,3),1)
6.0

p=1时,表示曼哈顿距离,即 ∑ i ∣ x i − y i ∣ \sum_i |x_i-y_i| ixiyi,对于 ( 0 , 0 ) (0,0) (0,0) ( 3 , 3 ) (3,3) (3,3)来说就是 3 + 3 = 6 3+3=6 3+3=6

矩形分割

通过split,可以对矩形进行分割,其输入参数有2,分别是分割所在坐标轴,以及该坐标轴处的刻度,效果如下

rec.split(0, 2)
(<Rectangle [(0.0, 2.0), (0.0, 5.0)]>, <Rectangle [(2.0, 5.0), (0.0, 5.0)]>)

由于Rectangle定义的超矩形可以有不同的维度,换言之,一维的矩形就是线段,三维的矩形就是立方体。一旦接受了这种设定,那么矩形分割就可以理解为线段分割,或者立方体分割。有了这个,就可以更加便捷地进行非线性寻优了。

scipy.optimize中,提供了DIRECT算法,运用的就是这种思想。

而在点云处理中使用更加频繁的八叉树,则是矩形分割更加直观的案例,open3d中实现了这种算法,以二维超矩形为例,则其运算流程可理解为四叉树。

仍以六个数据点作为研究对象:{(2,3), (5,4), (9,6), (4,7), (8,1), (7,2)},如果以 [ 0 , 10 ) [0,10) [0,10)为坐标空间,那么通过对这个空间四等分,可得到下左图

在这里插入图片描述=》在这里插入图片描述

令所有的分割都是左闭右开的,那么被分割后的四个区间中,除了右下角的方块包含三个点之外,剩下三个方块都只有一个点。只有一个点的方块显然就没法继续分割了,而第四个方块则可继续分割,得到右图。

这样,右下角的方块被继续分成了四个小方块,且每个小方块的元素都不超过一个,所以无法继续再分,四叉树也就完成了。

相关文章:

Python超矩形

文章目录 距离函数矩形分割 Rectangle是 scipy.spatial中封装的类&#xff0c;其构造函数只需输入最小值和最大值的数组即可&#xff0c;并且可通过内置的 volume方法计算广义的体积。 from scipy.spatial import Rectanglerec Rectangle((0,0), (5,5)) print(rec.maxes) …...

【软考数据库】第五章 计算机网络

目录 5.1 网络功能和分类 5.2 OSI七层模型 5.3 TCP/IP协议 5.4 传输介质 5.5 通信方式和交换方式 5.6 IP地址 5.7 IPv6 5.8 网络规划和设计 5.9 其他考点补充 5.10 网络安全技术 5.11 网络安全协议 前言&#xff1a; 笔记来自《文老师软考数据库》教材精讲&#xff…...

深眸科技|深度学习、3D视觉融入机器视觉系统,实现生产数智化

随着“中国制造2025”战略加速落实&#xff0c;制造业生产线正在加紧向智能化、自动化和数字化转型之路迈进。而人工智能技术的兴起以及边缘算力持续提升的同时&#xff0c;机器视觉及其相关技术也在飞速发展&#xff0c;并不断渗透进工业领域&#xff0c;拓展应用场景的同时&a…...

DateFormat使用时需要注意:多线程下需要特殊处理

前言 工作或学习过程中难免会接触到时间&#xff08;Date&#xff09;相关的内容&#xff0c;比如String类型转为Date类型&#xff0c;或者Date类型转为String类型&#xff0c;jdk为我们提供了一套完善的日期格式化工具&#xff0c;DateFormat类&#xff0c;使用者可以使用该接…...

Packet Tracer - 研究直连路由

Packet Tracer - 研究直连路由 目标 第 1 部分&#xff1a;研究 IPv4 直连路由 第 2 部分&#xff1a;研究 IPv6 直连路由 拓扑图 背景信息 本活动中的网络已配置。 您将登录路由器并使用 show 命令发现并回答以下有关直连路由的问题。 注&#xff1a;用户 EXEC 密码是 c…...

大专生程序员找工作的一点小建议 知识分享 经验分享

最近呢有人在私信我 就问我说我呢是一个大专生 大专毕业 学历呢也不是很好 我但是我学的是这个计算机 这样一个专业 然后呢现在找工作找不到 就这样的一个要求 让我们呢给一些建议 当然就是私底下在网上聊吗 就会给 也相信 我的一个建议是什么样的 就是你首先你要去找工作的 首…...

PyCaret:低代码自动化的机器学习工具

PyCaret简介 随着ChatGPT和AI画图的大火&#xff0c;机器学习作为实现人工智能的底层技术被大众越来越多的认知&#xff0c;基于机器学习的产品也越来越多。传统的机器学习实现方法需要较强的编程能力和数据科学基础&#xff0c;这使得想零基础尝试机器学习变得非常困难。 机器…...

【Hello Network】网络编程套接字(三)

作者&#xff1a;小萌新 专栏&#xff1a;网络 作者简介&#xff1a;大二学生 希望能和大家一起进步 本篇博客简介&#xff1a;简单介绍下各种类型的Tcp协议 各种类型Tcp服务器 多进程版的TCP网络程序捕捉SIGCHLD信号让孙子进程执行任务 多线程TCP网络程序线程池版多线程TCP网络…...

3.4 只读存储器

学习目标&#xff1a; 学习只读存储器&#xff08;ROM&#xff09;的目标可以包括以下内容&#xff1a; 了解ROM的基本概念、分类以及适用场景。掌握ROM的电路原理、逻辑结构和读取方式。熟悉ROM的编程方式和编程工具。理解ROM与EPROM、EEPROM和闪存的区别和联系。了解ROM在计…...

从后端开发转大数据开发怎么样?

很多做后端的小伙伴&#xff0c;在某一个瞬间&#xff0c;都想转行大数据&#xff0c;那这种想法可行嘛&#xff1f; 转大数据的最初原因很简单&#xff0c;就是好几个同事都转了&#xff0c;他们的收入瞬间提高了好多&#xff0c;于是在同事的内推我也就跟着转了&#xff0c;…...

编程式导航路由跳转到当前路由(参数不变),多次执行会抛出NavigatorDuplicated的禁告错误?

重写push与replace方法 编程式导航路由跳转到当前路由&#xff08;参数不变&#xff09;&#xff0c;多次执行会抛出NavigatorDuplicated的禁告错误&#xff1f; 路由跳转有俩种形式&#xff1a;声明式导航&#xff0c;编程式导航 声明式导航没有这类问题的&#xff0c;因为…...

AppArmor无内核及系统日志的问题及解决

在AppArmor中&#xff0c;正常情况下&#xff0c;一旦违反了规则&#xff0c;是能够在内核及系统日志中看到相关信息的。比如&#xff1a;在Ubuntu下正常产生的日志信息&#xff08;示例&#xff09;如下&#xff1a; kernel: [140321.028000] audit(1191433716.584:1578): t…...

本地更改配置ssh密钥和更改github网址

配置 SSH 密钥以进行身份验证&#xff0c;可以遵循以下步骤&#xff1a; 生成SSH密钥 打开 Git Bash 终端 在 Windows 上&#xff0c;可以打开 Git Bash 终端。通常&#xff0c;可以在开始菜单中搜索 Git Bash 并启动它。一旦打开了 Git Bash 终端&#xff0c;将进入一个基于…...

MATLAB函数封装2:QT调用封装函数

在利用MATLAB进行封装函数之后&#xff0c;最主要的目的是对函数进行调用&#xff0c;能够对矩阵运算和其他算法的运行进行快捷处理。 在有了MATLAB函数之后封装成DLL文件之后&#xff0c;在QT中添加动态链接库&#xff0c;就可以实现函数的调用过程&#xff0c;这个过程相对简…...

AJAX和JSON

1、什么是AJAX? AJAX&#xff08;ASynchronous JavaScript And XML&#xff09;异步的JavaScript 和 XML&#xff1b; 由Jesse James Garrett 在他的文章AJAX&#xff1a;A New Approoch to Web Applications中首次提出。 ajax&#xff08;Web数据交互方式&#xff09;_百…...

源码:SharedPreferences分析

一、持久化方式&#xff1a; DataStore&#xff1a;稳定性 MMKV&#xff1a;效率 SharedPreferneces 区别&#xff1a; 功能MMKVJetpack DataStoreSharedPreferneces是否阻塞主线程否否是是否线程安全是 是 是是否支持跨进程是否否是否类型…...

大二一个学期学这么点内容,没有概念,只有实操

如何查看所有的数据库&#xff1a; Show databases; 如何进入某个数据库&#xff1a; use xxx; 如何新进数据库&#xff1a; Create database jx; 如何删除数据库&#xff1a; Drop database jx; 如何查看所有的表格&#xff1a; Show tables; 如何创建数据表&#xf…...

AppWeb 身份验证绕过漏洞 (CVE-2018-8715)

当前漏洞环境部署在vulhub,当前验证环境为vulhub靶场&#xff08;所有实验均为虚拟环境&#xff09; 实验环境&#xff1a;攻击机----kali 靶机&#xff1a;centos7 1、进入靶场&#xff0c;启动环境 2、访问AppWeb控制台&#xff1a;http://your-ip:8080 使用用户名、密码adm…...

为什么监控摄像头画面不如手机拍摄视频画面清晰

一天和一个做餐饮的朋友吃饭聊天&#xff0c;他提出一个问题&#xff0c;几百块的监控摄像头就是纯粹做监控功能 &#xff0c;视频拍摄的画面为什么还没有几百元的手机拍摄的视频画面清晰&#xff0c;对于此特意查了一下技术资料&#xff0c;整理一下&#xff0c;以备下次再详细…...

EU GMP附录一与关键区域空气微生物取样方案及相关法规标准解读

2022版EU GMP附录一与关键区域空气微生物取样方案疑问解答 3月30日2022版EU GMP附录一与关键区域空气微生物取样方案网络研讨会期间&#xff0c;我们收集到了部分参会听众针对该主题所提出的常见问题。根据以下这些问题&#xff0c;lighthouse微生物应用专家将来为您答疑解惑。…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...