当前位置: 首页 > news >正文

C++每日一练:打家劫室(详解动态规划法)

文章目录

  • 前言
  • 一、题目
  • 二、分析
  • 三、代码
  • 总结


前言

这题目出得很有意思哈,打劫也是很有技术含量滴!不会点算法打劫这么粗暴的工作都干不好。
在这里插入图片描述


提示:以下是本篇文章正文内容,下面案例可供参考

一、题目

题目名称:
打家劫舍

题目描述:
一个小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

输入描述:
输入一个正整数n代表房屋的数量(n≤100),接着输入n个非负整数代表每间房屋的现金数量

输出描述:
小偷能偷取的最大金额。

示例1
输入
4
1 2 3 1

输出
4

二、分析

我们假设只有三个房间,事情就很简单了。做为专业小偷,我们知道,房屋编号是从0开始的,只能偷1号房屋或0号+2号房屋。为了取得最大战果,我们分别去看了看每个房屋能偷到多少。出门比较一下,就知道结果了。
我们逛完了三个房屋,现在站在第2号房屋门口来思考一下,就是选择0和2,或选1的问题。
我们把0+2能偷到的钱先记在2号房屋门上,把1号能偷到的钱记在1号门上,然后去看看3号房屋有多少钱可偷。这样1、2、3号房屋又成了一个同样的选择…
我们不停的在门上记录能偷到的钱,不停的用同样的方法选择。
拿示例来说,我们在1号房屋门上记上2毛,2号房屋门上记上4毛(0号加2号),然后和3号房屋来比较,显然4毛大于1号的2毛加3号的1毛。侦察完成,就偷0号加2号了!
再找个长点的例子:
1 2 3 2 9 1 2
同样先在1号房屋门上记上2毛,2号房屋门上记4毛(0号+2号),侦察完3号房屋后,就成了:
2 4 2 9 1 2
继续侦察下一家:
4 4 9 1 2
4 (13) 1 2
(13) 5 2
5 (15)
(15)
最后偷得15毛!

三、代码

#include <iostream>
#include <string>
#include <sstream>
#include <vector>
#include <algorithm>using namespace std;int solution(int n, std::vector<int>& vec){int result=0;// TODO:vector<int> tmp={vec[0], max(vec[0], vec[1])};if(n==1) return tmp[0];if(n==2) return tmp[1];for (int i=2; i<n; ++i){tmp[i] = max(tmp[i-1], tmp[i-2]+vec[i]);}result = tmp[n-1];return result;
}int main() {int n;std::vector<int> vec;std::cin>>n;std::string line_0, token_0;getline(std::cin >> std::ws,line_0);std::stringstream tokens_0(line_0);while(std::getline(tokens_0, token_0, ' ')){vec.push_back(std::stoi(token_0));}int result = solution(n,vec);std::cout<<result<<std::endl;return 0;

max(vec[0], vec[1])这一句解决了前二个房屋的选择,因为第二个房屋我们必须选前两个中最大的。如果0号是最大的,就把1号变成0号一样,再来继续选择。
举例来看:
7 1 1 2
侦察前二个房屋后就是:
7 7 1 2
然后7 8 2
最后9
如果是这样的:
1 7 2 1
侦察前二个后就还是:
1 7 2 1
所以初始化的时候一定要考虑清楚!

总结

所谓动态规划:就是将问题划分为一系列子问题,求各子问题的最优解,然后以自底向上的方式递归地从子问题的最优解构造出整个问题的最优解。
在本例中,我们把n个房屋不停的当作三个房屋来处理。所以我们设计了一个tmp数组来存储过程数据。
动态规划和分治法有点像,都是把复杂问题分解成简单的小问题。
不过动态规划的子问题之间不是独立的,子问题的解往往会在下一个选择中被使用。
而分治法,一般会把一个复杂的问题分解成若干个独立的子问题,求解子问题后再合成本问题的解。今天的 “小艺照镜子” (本专栏的另一篇文章有详解)就是用分治法解的。

相关文章:

C++每日一练:打家劫室(详解动态规划法)

文章目录 前言一、题目二、分析三、代码总结 前言 这题目出得很有意思哈&#xff0c;打劫也是很有技术含量滴&#xff01;不会点算法打劫这么粗暴的工作都干不好。 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、题目 题目名称&#xff1a; 打家…...

Wireshark使用

Capture Filters 语法 <Protocol name><Direction><Hosts><Value><Logical operations><Expressions> e.g 1.tcp src port 443 只抓取来源端口是443的tcp数据 2.not arp 不获取arp数据 3.port 80 获取端口是80的数据&#xff0c;不指…...

这才是 SpringBoot 统一登录鉴权、异常处理、数据格式 的正确姿势

本篇将要学习 Spring Boot 统一功能处理模块&#xff0c;这也是 AOP 的实战环节 用户登录权限的校验实现接口 HandlerInterceptor WebMvcConfigurer 异常处理使用注解 RestControllerAdvice ExceptionHandler 数据格式返回使用注解 ControllerAdvice 并且实现接口 Response…...

Java面试题总结 | Java面试题总结6-MYSQL模块(持续更新)

Mysql 文章目录 Mysql关系型数据库和非关系型数据库的区别什么是ORM?-**mybatis**如何评估一个索引创建的是否合理&#xff1f;Count函数执行效果上&#xff1a;执行效率上&#xff1a;count(主键)和count(列名) 数据库的三大范式Mysql中char和varchar的区别数据库设计或者功能…...

Linux命令集(Linux文件管理命令--mv指令篇)

Linux命令集&#xff08;Linux文件管理命令--mv指令篇&#xff09; Linux文件管理命令集&#xff08;mv指令篇&#xff09;2. mv(move)1. 文件移动2. 递归移动目录3. 文件目录重命名4. 强制移动5. 备份覆盖的目标文件6. 试探性移动7. 显示移动进度8. 补集操作9. 修改文件的权限…...

不一样的 Git 之间 | GitLab vs GitHub vs Gitee vs GitCode

Git仓库对比&#xff1a;GitLab vs GitHub vs Gitee vs GitCode 在软件开发中&#xff0c;版本控制是必不可少的工具之一。Git作为目前最为流行的版本控制系统&#xff0c;也逐渐成为了开发者们的标配。但是&#xff0c;如何选择一个合适的Git仓库来存储您的代码呢&#xff1f;…...

海尔牵头IEEE P2786国际标准通过Sponsor投票并连任工作组主席

01 海尔牵头IEEE P2786国际标准 通过Sponsor投票 并连任工作组主席 海尔牵头制定的全球首个服装物联网国际标准IEEE P2786《Standard for General Requirements and Interoperability for Internet of Clothing》通过Sponsor投票&#xff0c;标志着该国际标准草案得到了行业…...

倾斜摄影超大场景的三维模型的顶层合并的纹理压缩与抽稀处理技术分析

倾斜摄影超大场景的三维模型的顶层合并的纹理压缩与抽稀处理技术分析 倾斜摄影超大场景的三维模型的顶层合并需要对纹理进行压缩和抽稀处理&#xff0c;以减小数据量和提高数据的传输和展示性能。以下是一种常用的纹理压缩和抽稀处理技术&#xff1a; 1、纹理图集 纹理瓦片化…...

linux命令之iostat详解

iostat 监视系统输入输出设备和CPU的使用情况 推荐Linux命令在线工具&#xff1a;linux在线查询工具 补充说明 iostat命令 被用于监视系统输入输出设备和CPU的使用情况。它的特点是汇报磁盘活动统计情况&#xff0c;同时也会汇报出CPU使用情况。同vmstat一样&#xff0c;ios…...

【C++】程序员必备知识:认识类与对象

【C】程序员必备知识&#xff1a;认识类与对象 ①.面向过程和面向对象②.类的引入③.类的定义Ⅰ.定义方式Ⅱ.命名规则建议&#xff1a; ④.类的访问限定符及封装Ⅰ.访问限定符Ⅱ.封装 ⑤.类的作用域⑥.类的实例化⑦.类的对象大小计算Ⅰ.如何计算&#xff1f;Ⅱ.类对象存储方式Ⅲ…...

python基础实战5-python基本结构

1 if语句 if语句是用来进行判断的&#xff0c;其使用格式如下 if 要判断的条件&#xff1a; 条件成立时&#xff0c;要做的事情 案例一&#xff1a; age 30 print("------if判断开始------") if age > 18:print("我成年了") print("------if判断…...

移动端异构运算技术 - GPU OpenCL 编程(基础篇)

一、前言 随着移动端芯片性能的不断提升&#xff0c;在移动端上实时进行计算机图形学、深度学习模型推理等计算密集型任务不再是一个奢望。在移动端设备上&#xff0c;GPU 凭借其优秀的浮点运算性能&#xff0c;以及良好的 API 兼容性&#xff0c;成为移动端异构计算中非常重要…...

QString类方法和变量简介(全)

QString类方法和变量简介 操作字符串(|append|insert|sprintf|QString::arg()|prepend|replace|trimmed|simplified)查询字符串(startsWith|endsWith|contains|localeAwareCompare|compare)字符串转换 标准C提供了两种字符串&#xff1a;一种是C语言风格的以"\0"字符…...

中移链控制台对接4A平台功能验证介绍

中移链控制台具备单独的注册登录页面&#xff0c;用户可通过页面注册或者用户管理功能模块进行添加用户&#xff0c;通过个人中心功能模块进行用户信息的修改和密码修改等操作&#xff0c;因业务要求&#xff0c;需要对中移链控制台的用户账号进行集中管理&#xff0c;统一由 4…...

必知的Facebook广告兴趣定位技巧,更准确地找到目标受众

在Facebook广告投放中&#xff0c;兴趣定位是非常重要的一环。兴趣定位不仅可以帮助我们找到我们想要的目标受众&#xff0c;还可以帮助我们避免一些常见的坑。今天&#xff0c;就让我们一起来看看必知的Facebook广告兴趣定位技巧&#xff0c;更准确地找到目标受众。 1.不要只关…...

【MySQL】慢查询+SQL语句优化 (内容源自ChatGPT)

慢查询SQL语句优化 1.什么是慢查询2.优化慢查询3.插入数据优化5.插入数据底层是什么6.页分裂7.页合并8.主键优化方式10.count 优化11.order by优化12.group by 优化13.limit优化14.update 优化15.innodb 三大特征 1.什么是慢查询 慢查询是指执行SQL查询语句所需要的时间较长&a…...

HashMap底层源码解析及红黑树分析

HashMap线程不安全&#xff0c;底层数组链表红黑树 面试重点是put方法&#xff0c;扩容 总结 put方法 HashMap的put方法&#xff0c;首先通过key去生成一个hash值&#xff0c;第一次进来是null&#xff0c;此时初始化大小为16&#xff0c;i (n - 1) & hash计算下标值&a…...

科技云报道:一路狂飙的ChatGPT,是时候被监管了

科技云报道原创。 即使你过去从不关注科技领域&#xff0c;但近期也会被一个由OpenAI&#xff08;美国的一家人工智能公司&#xff09;开发的人工智能聊天机器人“ChatGPT”刷屏。 与上届“全球网红”元宇宙不同&#xff0c;这位新晋的“全能网友”似乎来势更加凶猛。 互联网…...

第四十四章 管理镜像 - 传入日记传输率

文章目录 第四十四章 管理镜像 - 传入日记传输率传入日记传输率镜像数据库状态 第四十四章 管理镜像 - 传入日记传输率 传入日记传输率 在备份和异步成员的镜像成员状态列表下方&#xff0c;自上次刷新镜像监视器以来日志数据从主服务器到达的速率显示在该成员的传入日志传输…...

加密解密学习笔记

加密种类 对称加密&#xff0c;分组对称加密算法 加密算法 AES&#xff08;Advanced Encryption Standard&#xff09;高级加密标准 DES&#xff08;Data Encryption Standard&#xff09;数据加密标准 3DES/Triple DEA (Triple Data Encryption Algorithm) 三重数据加密算…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...