你的登录接口真的安全吗?
1.前言
大家学写程序时,第一行代码都是hello world。但是当你开始学习WEB后台技术时,很多人的第一个功能就是写的登录 (小声:别人我不知道,反正我是)。但是我在和很多工作经验较短的同学面试或沟通的时候,发现很多同学虽然都有在简历上写:负责项目的登录/注册功能模块的开发和设计工作,但是都只是简单的实现了功能逻辑,在安全方面并没有考虑太多。这篇文章主要是和大家聊一聊,在设计一个登录接口时,不仅仅是功能上的实现,在安全方面,我们还需要考虑哪些地方。
2.安全风险
暴力破解
只要网站是暴露在公网的,那么很大概率上会被人盯上,尝试爆破这种简单且有效的方式:通过各种方式获得了网站的用户名之后,通过编写程序来遍历所有可能的密码,直至找到正确的密码为止
伪代码如下:
> 基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
>
> * 项目地址:<https://github.com/YunaiV/yudao-cloud>
> * 视频教程:<https://doc.iocoder.cn/video/># 密码字典
password_dict = []
# 登录接口
login_url = ''
def attack(username):for password in password_dict:data = {'username': username, 'password': password}content = requests.post(login_url, data).content.decode('utf-8')if 'login success' in content:print('got it! password is : %s' % password)
那么这种情况,我们要怎么防范呢?
验证码
有聪明的同学就想到了,我可以在它密码错误达到一定次数时,增加验证码校验!比如我们设置,当用户密码错误达到3次之后,则需要用户输入图片验证码才可以继续登录操作:
伪代码如下:
fail_count = get_from_redis(fail_username)
if fail_count >= 3:if captcha is None:return error('需要验证码')check_captcha(captcha)
success = do_login(username, password)
if not success:set_redis(fail_username, fail_count + 1)
伪代码未考虑并发,实际开发可以考虑加锁。
这样确实可以过滤掉一些非法的攻击,但是以目前的OCR技术来说的话,普通的图片验证码真的很难做到有效的防止机器人(我们就在这个上面吃过大亏)。当然,我们也可以花钱购买类似于三方公司提供的滑动验证等验证方案,但是也并不是100%的安全,一样可以被破解(惨痛教训)。
登录限制
那这时候又有同学说了,那我可以直接限制非正常用户的登录操作,当它密码错误达到一定次数时,直接拒绝用户的登录,隔一段时间再恢复。比如我们设置某个账号在登录时错误次数达到10次时,则5分钟内拒绝该账号的所有登录操作。
伪代码如下:
fail_count = get_from_redis(fail_username)
locked = get_from_redis(lock_username)if locked:return error('拒绝登录')
if fail_count >= 3:if captcha is None:return error('需要验证码')check_captcha(captcha)
success = do_login(username, password)
if not success:set_redis(fail_username, fail_count + 1)if fail_count + 1 >= 10:# 失败超过10次,设置锁定标记set_redis(lock_username, true, 300s)
umm,这样确实可以解决用户密码被爆破的问题。但是,这样会带来另一个风险:攻击者虽然不能获取到网站的用户信息,但是它可以让我们网站所有的用户都无法登录!攻击者只需要无限循环遍历所有的用户名(即使没有,随机也行)进行登录,那么这些用户会永远处于锁定状态,导致正常的用户无法登录网站!
IP限制
那既然直接针对用户名不行的话,我们可以针对IP来处理,直接把攻击者的IP封了不就万事大吉了嘛。我们可以设定某个IP下调用登录接口错误次数达到一定时,则禁止该IP进行登录操作。
伪代码如下:
ip = request['IP']
fail_count = get_from_redis(fail_ip)
if fail_count > 10:return error('拒绝登录')
# 其它逻辑
# do something()
success = do_login(username, password)
if not success:set_redis(fail_ip, true, 300s)
这样也可以一定程度上解决问题,事实上有很多的限流操作都是针对IP进行的,比如niginx的限流模块就可以限制一个IP在单位时间内的访问次数。但是这里还是存在问题:
-
比如现在很多学校、公司都是使用同一个出口IP,如果直接按IP限制,可能会误杀其它正常的用户
-
现在这么多VPN,攻击者完全可以在IP被封后切换VPN来攻击
手机验证
那难道就没有一个比较好的方式来防范吗? 当然有。 我们可以看到近些年来,几乎所有的应用都会让用户绑定手机,一个是国家的实名制政策要求,第二个是手机基本上和身份证一样,基本上可以代表一个人的身份标识了。所以很多安全操作都是基于手机验证来进行的,登录也可以。
当用户输入密码次数大于3次时,要求用户输入验证码(最好使用滑动验证)
当用户输入密码次数大于10次时,弹出手机验证,需要用户使用手机验证码和密码双重认证进行登录
手机验证码防刷就是另一个问题了,这里不展开,以后再有时间再聊聊我们在验证码防刷方面做了哪些工作。
伪代码如下:
fail_count = get_from_redis(fail_username)if fail_count > 3:if captcha is None:return error('需要验证码')check_captcha(captcha)if fail_count > 10:# 大于10次,使用验证码和密码登录if dynamic_code is None:return error('请输入手机验证码')if not validate_dynamic_code(username, dynamic_code):delete_dynamic_code(username)return error('手机验证码错误')success = do_login(username, password, dynamic_code)if not success:set_redis(fail_username, fail_count + 1)
我们结合了上面说的几种方式的同时,加上了手机验证码的验证模式,基本上可以阻止相当多的一部分恶意攻击者。但是没有系统是绝对安全的,我们只能够尽可能的增加攻击者的攻击成本。大家可以根据自己网站的实际情况来选择合适的策略。
中间人攻击?
什么是中间人攻击
中间人攻击(man-in-the-middle attack, abbreviated to MITM) ,简单一点来说就是,A和B在通讯过程中,攻击者通过嗅探、拦截等方式获取或修改A和B的通讯内容。
举个栗子:小白给小黄发快递,途中要经过快递点A,小黑就躲在快递点A,或者干脆自己开一个快递点B来冒充快递点A。然后偷偷的拆了小白给小黄的快递,看看里面有啥东西。甚至可以把小白的快递给留下来,自己再打包一个一毛一样的箱子发给小黄。
那在登录过程中,如果攻击者在嗅探到了从客户端发往服务端的登录请求,就可以很轻易的获取到用户的用户名和密码。
HTTPS
防范中间人攻击最简单也是最有效的一个操作,更换HTTPS,把网站中所有的HTTP请求修改为强制使用HTTPS。
为什么HTTPS可以防范中间人攻击?HTTPS实际上就是在HTTP和TCP协议中间加入了SSL/TLS协议,用于保障数据的安全传输。相比于HTTP,HTTPS主要有以下几个特点:
-
内容加密
-
数据完整性
-
身份验证
具体的HTTPS原理这里就不再扩展了,大家可以自行Google
加密传输
在HTTPS之外,我们还可以手动对敏感数据进行加密传输:
-
用户名可以在客户端使用非对称加密,在服务端解密
-
密码可以在客户端进行MD5之后传输,防止暴露密码明文
3.其它
除了上面我们聊的这些以外,其实还有很多其它的工作可以考虑,比如:
-
操作日志 ,用户的每次登录和敏感操作都需要记录日志(包括IP、设备等)
-
异常操作或登录提醒 ,有了上面的操作日志,那我们就可以基于日志做风险提醒,比如用户在进行非常登录地登录、修改密码、登录异常时,可以短信提醒用户
-
拒绝弱密码 注册或修改密码时,不允许用户设置弱密码
-
防止用户名被遍历 有些网站在注册时,在输入完用户名之后,会提示用户名是否存在。这样会存在网站的所有用户名被泄露的风险(遍历该接口即可),需要在交互或逻辑上做限制
...
4.后记
现在国家不断的出台各种法律,对用户的数据越来越看重。作为开发者,我们也需要在保护用户数据和用户隐私方面做更多的工作。后面我也会和大家聊一聊,我们在数据安全方面,做了哪些工作,希望可以给到大家一点点帮助。
相关文章:
你的登录接口真的安全吗?
1.前言 大家学写程序时,第一行代码都是hello world。但是当你开始学习WEB后台技术时,很多人的第一个功能就是写的登录 (小声:别人我不知道,反正我是)。但是我在和很多工作经验较短的同学面试或沟通的时候&…...

ChatGPT情商很高,但并不适合当搜索引擎
微软和谷歌正急于使用大型语言模型技术来强化搜索引擎。但有充分的理由认为,相比于提供事实性信息,这项技术更适合作为人们情感上的伴侣。 美媒评论称,目前基于大型语言模型的人工智能工具,例如ChatGPT,更擅长共情而不…...
Mac 地址与 IP 地址有什么区别?
Mac 地址和 IP 地址是两个不同的概念,它们分别代表了计算机网络中的不同层次和地址。Mac 地址是物理地址,是在计算机硬件中存储的地址,通常是以特定的六进制格式表示。每个设备都有一个唯一的 MAC 地址,它可以用来在计算机之间进行…...
bootloaders
什么是BootLoader? 一般来说,bootloader是一种软件/固件,它在SoC上电后立即运行。bootloader的主要职责是启动软件的后续部分,例如操作系统、baremetal应用程序或在某些情况下另一个bootloader。当涉及到嵌入式时,bootloader通常…...

PC或服务器装双系统
1. 准备工作 1.1U盘启动盘的制作 ①准备一个 4G 以上的 U 盘,备份好U盘资料,后面会对 U 盘进行格式化。 ②去CentOS官网下载你想要安装的 ISO 格式镜像文件,现在通常是CentOS6、7或者8。如果你英文不太好,可以选择使用edge浏览…...

嵌入式代码查看分析利器---Understand
平时在开发嵌入式程序的时候大多数使用的都是keil软件,一般小的工程使用keil没感觉到有什么问题,但是当工程比较大的时候,比如移植了FreeRTOS系统或者LWIP网络系统时,代码全部编译一次就要花费很长世间,特别是开启了点…...

人群计数经典方法Density Map Estimation,密度图估计
(3)Density Map Estimation(主流) 这是crowd counting的主流方法 传统方法不好在哪里?object detection-based method和regression-based method无法从图像中提取更抽象的有助于完成人群计数任务的语义特征 概况&…...
【华为】Smart-Link基础知识
Smark-Link技术 Smark-Link(灵活链路or备份链路,华为/华三 私有用) Smark-Link定义 Smark-Link,又叫备份链路。一个Smark Link由两个接口组组成,其中一个接口作为另一个的备份。Smark-Link常用于双上行组网,提供可靠高效的备份与…...

分享24个强大的HTML属性 —— 建议每位前端工程师都应该掌握
前期回顾 是不是在为 API 烦恼 ?好用免费的api接口大全呼之欲出_0.活在风浪里的博客-CSDN博客APi、常用框架、UI、文档—— 整理合并https://blog.csdn.net/m0_57904695/article/details/130459417?spm1001.2014.3001.5501 👍 本文专栏:…...

NIO基础 - 网络编程
non-blocking io 非阻塞 IO 1. 三大组件 1.1 Channel & Buffer channel 有一点类似于 stream,它就是读写数据的双向通道,可以从 channel 将数据读入 buffer,也可以将 buffer 的数据写入 channel,而之前的 stream 要么是输入…...
06.toRef 和 toRefs
学习要点: 1.toRef 和 toRefs 本节课我们来要了解一下 Vue3.x 中的 ref 两个周边 API 的用法; 一.toRef 和 toRefs 1. toRef 可以将源响应式对象上的 property 创建一个 ref 对象; const obj reactive({ name : Mr.Lee, age : 10…...

RabbitMq、Kafka、RocketMq整理
MQ的主要作用:异步提高性能、解耦提高扩展性、削峰。 一、常见中间件对比 Kafka、RocketMq和RabbitMq最大的区别就是:前两个是分布式存储。 1.1、ActiveMq 优点:1)完全支持jms规范的消息中间件 ,2)提供丰富的api, 3)多种集群构建模式。 缺点:)在高并发的场景下,性能可…...

Python多元线性回归预测模型实验完整版
多元线性回归预测模型 实验目的 通过多元线性回归预测模型,掌握预测模型的建立和应用方法,了解线性回归模型的基本原理 实验内容 多元线性回归预测模型 实验步骤和过程 (1)第一步:学习多元线性回归预测模型相关知识。 一元线性回归模型…...
C#基础 变量在内存中的存储空间
变量存储空间(内存中) // 1byte 8bit // 1KB 1024byte // 1MB 1024KB // 1GB 1024MB // 1TB 1024GB // 通过sizeof方法 可以获取变量类型所占的内存空间(单位:字节) 有…...

你最关心的4个零代码问题,ChatGPT 帮你解答了!
作为人工智能(AI)新型聊天机器人模型 ChatGPT,刚上线5天就突破100万用户,两个多月全球用户量破亿,不愧为业界最炙热的当红炸子鸡。 ChatGPT 是一种语言生成模型,由 OpenAI 开发和训练。它是基于 Transform…...
linux的环境变量
目录 一、自定义变量和环境变量的区别 二、自定义变量 三、环境变量 四、查看所有变量(自定义变量、环境变量) 五、记录环境变量到相关的系统文件 (1)为什么要这样做? (2)环境变量相关系统…...

openQA----基于openSUSE部署openQA
【原文链接】openQA----基于openSUSE部署openQA (1)下载 openqa-bootstrap 脚本并执行 cd /opt/ curl -s https://raw.githubusercontent.com/os-autoinst/openQA/master/script/openqa-bootstrap | bash -x(2)配置apache proxy…...

正则表达式基础一
BRE(basic regular expression):匹配数据流中的文本字符 普通文本匹配 特殊字符 正则表达式存在一些特殊字符,如需当成普通文本来匹配,必须加上转义,即反斜杠\,如下所示 .*[]^${}?|() 指定出现位置的字符 ^ 指定行首…...
Java中的内存泄露、内存溢出与栈溢出
内存泄露、内存溢出与栈溢出 1、概述2、内存泄漏、内存溢出和栈溢出2.1、内存泄漏2.2、内存溢出2.3、栈溢出 2、总结 1、概述 大家好,我是欧阳方超。本次就Java中几个相似而又不同的概念做一下介绍。内存泄漏、内存溢出和栈溢出都是与内存相关的问题,但…...

时序预测 | Matlab实现SSA-GRU、GRU麻雀算法优化门控循环单元时间序列预测(含优化前后对比)
时序预测 | Matlab实现SSA-GRU、GRU麻雀算法优化门控循环单元时间序列预测(含优化前后对比) 目录 时序预测 | Matlab实现SSA-GRU、GRU麻雀算法优化门控循环单元时间序列预测(含优化前后对比)预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现SSA-GRU、GRU麻雀算法…...

无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...

招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...
大数据驱动企业决策智能化的路径与实践
📝个人主页🌹:慌ZHANG-CSDN博客 🌹🌹期待您的关注 🌹🌹 一、引言:数据驱动的企业竞争力重构 在这个瞬息万变的商业时代,“快者胜”的竞争逻辑愈发明显。企业如何在复杂环…...
LeetCode 0386.字典序排数:细心总结条件
【LetMeFly】386.字典序排数:细心总结条件 力扣题目链接:https://leetcode.cn/problems/lexicographical-numbers/ 给你一个整数 n ,按字典序返回范围 [1, n] 内所有整数。 你必须设计一个时间复杂度为 O(n) 且使用 O(1) 额外空间的算法。…...