依存句法分析 -- tag和dep释义
依存句法分析(Dependency Parsing, DP)是通过分析语言单位内成分之间的依存关系揭示其句法结构,主张橘子 中核心动词是支配其它成分的中心成分,而它本身却不受其他任何成分的支配,所有受支配成分都以某种关系从属于支配者。依存句法的结构没有非终结点,词与词之间直接发生依存关系,构成一个依存对,其中一个是核心词,也叫支配词,另一个叫修饰词,也叫从属词。依存关系用一个邮箱弧表示,叫做依存弧。
依存句法分析的五个条件:
(1)一个句子中只有一个成分是独立的
(2)句子的其他成分都从属与某一成分
(3)任何一个成分都不能依存于两个或两个以上的成分
(4)如果成分A直接从属成分B,而成分C在句子中位于A和B之间,那么成分C或者从属于A,或者从属于B,或者从属于A和B之间的某一成分
(5)中心成分左右两边的其他成分相互不发生关系
标注词表(tag)
名词: NN, NNS, NNP, NNPS
代词: PRP, PRPS
形容词: JJ, JJR, JJS
数词: CD
动词: VB, VBD, VBG, VBN,VBP, VBZ
副词: RB, RBR, RBS
1. CC Coordinating conjunction 连接词
2. CD Cardinal number 基数词
3. DT Determiner
限定词(如this,that,these,those,such,不定限定词:no,some,any,each,every,enough,either,neither,all,both,half,several,many,much,(a)
few,(a) little,other,another.
4. EX Existential there 存在句
5. FW Foreign word 外来词
6. IN Preposition or subordinating conjunction 介词或从属连词
7. JJ Adjective 形容词或序数词
8. JJR Adjective, comparative 形容词比较级
9. JJS Adjective, superlative 形容词最高级
10. LS List item marker 列表标示
11. MD Modal 情态助动词
12. NN Noun, singular or mass 常用名词 单数形式
13. NNS Noun, plural 常用名词 复数形式
14. NNP Proper noun, singular 专有名词,单数形式
15. NNPS Proper noun, plural 专有名词,复数形式
16. PDT Predeterminer 前位限定词
17. POS Possessive ending 所有格结束词
18. PRP Personal pronoun 人称代词
19. PRP$ Possessive pronoun 所有格代名词
20. RB Adverb 副词
21. RBR Adverb, comparative 副词比较级
22. RBS Adverb, superlative 副词最高级
23. RP Particle 小品词
24. SYM Symbol 符号
25. TO to 作为介词或不定式格式
26. UH Interjection 感叹词
27. VB Verb, base form 动词基本形式
28. VBD Verb, past tense 动词过去式
29. VBG Verb, gerund or present participle 动名词和现在分词
30. VBN Verb, past participle 过去分词
31. VBP Verb, non-3rd person singular present 动词非第三人称单数
32. VBZ Verb, 3rd person singular present 动词第三人称单数
33. WDT Wh-determiner 限定词(如关系限定词:whose,which.疑问限定词:what,which,whose.)
34. WP Wh-pronoun 代词(who whose which)
35. WP$ Possessive wh-pronoun 所有格代词
36. WRB Wh-adverb 疑问代词(how where when)
关系表示(dep)
abbrev: abbreviation modifier,缩写
acl: 名词从句修饰语
acomp: adjectival complement,形容词的补充;
advcl : adverbial clause modifier,状语从句修饰词
advmod: adverbial modifier状语
agent: agent,代理,一般有by的时候会出现这个
amod: adjectival modifier形容词
appos: appositional modifier,同位词(介词修饰语)
attr: attributive,属性
aux: auxiliary,非主要动词和助词,如BE,HAVE SHOULD/COULD等到
auxpass: passive auxiliary 被动词
case: 格标记
cc: coordination,并列关系,一般取第一个词
ccomp: clausal complement从句补充
complm: complementizer,引导从句的词好重聚中的主要动词
compound: 复合标识符
conj : conjunct,连接两个并列的词。
cop: copula。系动词(如be,seem,appear等),(命题主词与谓词间的)连系
csubj : clausal subject,从主关系
csubjpass: clausal passive subject 主从被动关系
dep: dependent依赖关系
det: determiner决定词,如冠词等
obj: object, 宾语
dobj : direct object直接宾语
expl: expletive,主要是抓取there
infmod: infinitival modifier,动词不定式
iobj : indirect object,非直接宾语,也就是所以的间接宾语;
csubj: 从句主语
csubjpass: 被动从句主语
mark: marker,主要出现在有“that” or “whether”“because”, “when”,
mwe: multi-word expression,多个词的表示
neg: negation modifier否定词
nn: noun compound modifier名词组合形式
nmod: 标称修饰语
npadvmod: noun phrase as adverbial modifier名词作状语
nsubj : nominal subject,名词主语
nsubjpass: passive nominal subject,被动的名词主语
num: numeric modifier,数值修饰
number: element of compound number,组合数字
parataxis: parataxis: parataxis,并列关系
partmod: participial modifier动词形式的修饰
pcomp: prepositional complement,介词补充
pobj : object of a preposition,介词的宾语
poss: possession modifier,所有形式,所有格,所属
possessive: possessive modifier,这个表示所有者和那个’S的关系
preconj : preconjunct,常常是出现在 “either”, “both”, “neither”的情况下
predet: predeterminer,前缀决定,常常是表示所有
prep: prepositional modifier
prepc: prepositional clausal modifier
prt: phrasal verb particle,动词短语
punct: punctuation,这个很少见,但是保留下来了,结果当中不会出现这个
purpcl : purpose clause modifier,目的从句
quantmod: quantifier phrase modifier,数量短语
rcmod: relative clause modifier相关关系
ref : referent,指示物,指代
rel : relative
root: root,最重要的词,从它开始,根节点
tmod: temporal modifier
xcomp: open clausal complement 开放式补语
xsubj : controlling subject 掌控者
nummod: 数词修饰语
相关文章:
依存句法分析 -- tag和dep释义
依存句法分析(Dependency Parsing, DP)是通过分析语言单位内成分之间的依存关系揭示其句法结构,主张橘子 中核心动词是支配其它成分的中心成分,而它本身却不受其他任何成分的支配,所有受支配成分都以某种关系从属于支配…...
服务器常见的网络攻击以及防御方法
网络安全威胁类别 网络内部的威胁,网络的滥用,没有安全意识的员工,黑客,骇客。 木马攻击原理 C/S 架构,服务器端被植入目标主机,服务器端通过反弹连接和客户端连接。从而客户端对其进行控制。 病毒 一…...
Python期末复习知识点大合集(期末不挂科版)
Python期末复习知识点大合集(期末不挂科版) 文章目录Python期末复习知识点大合集(期末不挂科版)一、输入及类型转换二、格式化输出:字符串的format方法三、流程控制四、随机数生成五、字符串六、序列索(含字…...
Echarts 雷达图设置拐点大小和形状,tooltip后文字不居中对齐
第017个点击查看专栏目录Echarts的雷达图的拐点大小和形状是可以设置的,在series中设置symbol 相应的属性即可。 使用tooltip的时候,默认状态文字是居中对齐的,不好看。需要在tooltip属性中设置一下,如图所示,效果比较…...
Lesson 7.1 无监督学习算法与 K-Means 快速聚类
文章目录一、聚类算法与无监督学习二、K-Means 快速聚类的算法原理1. K-Means 快速聚类的基本执行流程2. K-Means 快速聚类的背后的数学意义三、K-Means 快速聚类的 sklearn 实现方法1. sklearn 中实现 K-Means 快速快速聚类2. 轮廓系数基本概念与 sklearn 中实现方法从现在开始…...
优维低代码:Legacy Templates 构件模板
优维低代码技术专栏,是一个全新的、技术为主的专栏,由优维技术委员会成员执笔,基于优维7年低代码技术研发及运维成果,主要介绍低代码相关的技术原理及架构逻辑,目的是给广大运维人提供一个技术交流与学习的平台。 连载…...
最全面的SpringBoot教程(五)——整合框架
前言 本文为 最全面的SpringBoot教程(五)——整合框架 相关知识,下边将对SpringBoot整合Junit,SpringBoot整合Mybatis,SpringBoot整合Redis等进行详尽介绍~ 📌博主主页:小新要变强 的主页 &…...
信息安全保障
信息安全保障信息安全保障基础信息安全保障背景信息安全保障概念与模型基于时间的PDR模型PPDR模型(时间)IATF模型--深度防御保障模型(空间)信息安全保障实践我国信息安全保障实践各国信息安全保障我国信息安全保障体系信息安全保障…...
windows/linux,mosquitto插件mosquitto-auth-plug说明,重点讲解windows下
先贴代码,再讲方法 #ifndef AUTH_PLUG_H #define AUTH_PLUG_H#ifdef _WIN32 #ifdef AUTH_PLUG_EXPORTS # define AUTH_PLUG_AP...
GWAS:mtag (Multi-Trait Analysis of GWAS) 分析
mtag (Multi-Trait Analysis of GWAS)作用:通过对多个表型相似的GWAS summary结果进行联合分析,发现更多的表型相关基因座。 以抑郁症状、神经质和主观幸福感这三个表型为例,分别对他们进行GWAS分析,鉴定得到32、9 和 13个基因座与…...
MATLAB--imadjust函数
目录 一、功能 二、使用 1.格式 2.具体用法 3.代码 总结 一、功能 功能:通过灰度变换调整对比度 二、使用 1.格式 Jimadjust(I,[low high],[bottom top],gamma)2.具体用法 将图像I中的灰度值映射到J中的新值,即将灰度在[low high]之间的值映射到…...
前端开发这次几个非常经典的常用技巧,学会了之后事半功倍
对于一个刚入前端的新手来说,在前端开发过程中会遇到各种各样的麻烦和坑,这样很多时候回让开发者的信息受到打击,作为一个稍微好一点的前端菜鸟来说,今天就给刚入前端的新手们分享一些比较实用的开发技巧,让之少走一些…...
Zookeeper配置化中心
zookeeper的基本知识 zookeeper的数据结构:zookeeper提供的命名空间非常类似于标准的文件系统,key-value的形式存储,名称key由/分割的一系列路径元素,zookeeper名称空间中的每个节点都是一个路径标志。 windows下的zookeeper安装&#…...
【LeetCode】打家劫舍 III [M](递归)
337. 打家劫舍 III - 力扣(LeetCode) 一、题目 小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。 除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识…...
设计模式——单例模式
单例模式分为懒汉式和饿汉式两种 在有些系统中,为了节省内存资源、保证数据内容的一致性,对某些类要求只能创建一个实例,这就是所谓的单例模式. 例如,Windows 中只能打开一个任务管理器,这样可以避免因打开多个任务管理…...
json-server环境搭建及使用
json-server环境搭建 一个在前端本地运行,可以存储json数据的server。 基于node环境,可以指定一个 json 文件作为 API 的数据源。 文章目录json-server环境搭建前提下载安装监听服务启动成功修改端口号方式一:方式二:数据操作测试…...
RabbitMQ运行机制
消息的TTL(Time To Live) 消息的TTL就是消息的存活时间。 • RabbitMQ可以对队列和消息分别设置TTL。 • 对队列设置就是队列没有消费者连着的保留时间,也可以对每一个单独的消息做单独的 设置。超过了这个时间,我们认为这个消息…...
【Spring Cloud Alibaba】(三)OpenFeign扩展点实战 + 源码详解
系列目录 【Spring Cloud Alibaba】(一)微服务介绍 及 Nacos注册中心实战 【Spring Cloud Alibaba】(二)微服务调用组件Feign原理实战 本文目录系列目录前言一、Feign扩展点配置二、OpenFeign扩展点配置1. 通过配置文件配置有效范…...
面向对象设计原则
在面向对象的设计过程中, 我们要对代码进行一个设计, 从而提高一个软件系统的可维护性和可复用性, 那么遵从面向对象的设计原则,可以在进行设计方案时减少错误设计的产生,从不同的角度提升一个软件结构的设计水平。 面向对象有以下七大原则:1.单一职责原…...
2022年“网络安全”赛项湖南省赛选拔赛 任务书
2022年“网络安全”赛项湖南省赛选拔赛 任务书2022年“网络安全”赛项湖南省赛选拔赛 任务书A模块基础设施设置/安全加固(200分)B模块安全事件响应/网络安全数据取证/应用安全(400分)C模块 CTF夺旗-攻击 (200分&#x…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
