当前位置: 首页 > news >正文

简单的无理函数的不定积分

前置知识:

  • 直接积分法
  • 有理函数的不定积分

简单的无理函数的不定积分

对无理函数积分的基本方法就是通过换元将其化为有理函数的积分。下面讲讲几类无理函数积分的求法。

注: R ( u , v ) R(u,v) R(u,v)是由 u , v u,v u,v与常数经过有限次四则运算得到的有理式。

形如 ∫ R ( x , a x + b c x + d ) d x \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx R(x,cx+dax+b )dx的积分

求形如 ∫ R ( x , a x + b c x + d ) d x \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx R(x,cx+dax+b )dx的积分,其中 a d ≠ b c ad\neq bc ad=bc

t n = a x + b c x + d t^n=\dfrac{ax+b}{cx+d} tn=cx+dax+b,则 x = d t n − b a − c t n x=\dfrac{dt^n-b}{a-ct^n} x=actndtnb d x = a d − b c ( a − c t n ) 2 n t n − 1 d t dx=\dfrac{ad-bc}{(a-ct^n)^2}nt^{n-1}dt dx=(actn)2adbcntn1dt,从而把原积分变换为有理函数的积分。

∫ R ( x , a x + b c x + d ) d x = ∫ R ( d t n − b a − c t n , t ) ⋅ a d − b c ( a − c t n ) 2 n t n − 1 d t \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx=\int R(\dfrac{dt^n-b}{a-ct^n},t)\cdot\dfrac{ad-bc}{(a-ct^n)^2}nt^{n-1}dt R(x,cx+dax+b )dx=R(actndtnb,t)(actn)2adbcntn1dt

例题

计算 ∫ 1 ( x − 1 ) ( x + 1 ) 2 3 d x \int \dfrac{1}{\sqrt[3]{(x-1)(x+1)^2}}dx 3(x1)(x+1)2 1dx

解:
\qquad t = x + 1 x − 1 3 t=\sqrt[3]{\dfrac{x+1}{x-1}} t=3x1x+1 ,则 x = t 3 + 1 t 3 − 1 x=\dfrac{t^3+1}{t^3-1} x=t31t3+1 d x = − 6 t 2 ( t 3 − 1 ) 2 d t dx=-\dfrac{6t^2}{(t^3-1)^2}dt dx=(t31)26t2dt,于是

\qquad 原式 = ∫ x + 1 x − 1 3 ⋅ 1 x + 1 d x = − ∫ t ⋅ ( 1 2 ⋅ t 3 − 1 t 3 ) ⋅ 6 t 2 ( t 3 − 1 ) 2 d t =\int \sqrt[3]{\dfrac{x+1}{x-1}}\cdot\dfrac{1}{x+1}dx=-\int t\cdot(\dfrac 12\cdot\dfrac{t^3-1}{t^3})\cdot \dfrac{6t^2}{(t^3-1)^2}dt =3x1x+1 x+11dx=t(21t3t31)(t31)26t2dt

= − ∫ 3 t 3 − 1 d t = ∫ ( − 1 t − 1 + t + 2 t 2 + t + 1 ) d t \qquad\qquad =-\int \dfrac{3}{t^3-1}dt=\int(-\dfrac{1}{t-1}+\dfrac{t+2}{t^2+t+1})dt =t313dt=(t11+t2+t+1t+2)dt

= − ln ⁡ ∣ t − 1 ∣ + 1 2 ∣ t 2 + t + 1 ∣ + 3 arctan ⁡ ( 2 t + 1 3 ) + C \qquad\qquad =-\ln|t-1|+\dfrac 12|t^2+t+1|+\sqrt 3\arctan(\dfrac{2t+1}{\sqrt 3})+C =lnt1∣+21t2+t+1∣+3 arctan(3 2t+1)+C

= 1 2 ln ⁡ t 3 − 1 ( t − 1 ) 3 + 3 arctan ⁡ ( 2 t + 1 3 ) + C \qquad\qquad =\dfrac 12\ln\dfrac{t^3-1}{(t-1)^3}+\sqrt3\arctan(\dfrac{2t+1}{\sqrt 3})+C =21ln(t1)3t31+3 arctan(3 2t+1)+C

= 1 2 ln ⁡ ∣ 2 x − 1 ( x + 1 x − 1 − 1 ) 3 ∣ + 3 arctan ⁡ [ 2 3 x + 1 x − 1 3 + 1 3 ] + C \qquad\qquad =\dfrac 12\ln|\dfrac{\frac{2}{x-1}}{(\sqrt{\frac{x+1}{x-1}}-1)^3}|+\sqrt3\arctan[\dfrac{2}{\sqrt 3}\sqrt[3]{\dfrac{x+1}{x-1}}+\dfrac{1}{\sqrt 3}]+C =21ln(x1x+1 1)3x12+3 arctan[3 23x1x+1 +3 1]+C

= − 1 2 ln ⁡ ∣ x − 1 2 ∣ − 3 2 ln ⁡ ∣ x + 1 x − 1 3 − 1 ∣ + 3 arctan ⁡ [ 2 3 x + 1 x − 1 3 + 1 3 ] + C \qquad\qquad =-\dfrac12\ln|\dfrac{x-1}{2}|-\dfrac 32\ln|\sqrt[3]{\dfrac{x+1}{x-1}}-1|+\sqrt3\arctan[\dfrac{2}{\sqrt 3}\sqrt[3]{\dfrac{x+1}{x-1}}+\dfrac{1}{\sqrt 3}]+C =21ln2x123ln3x1x+1 1∣+3 arctan[3 23x1x+1 +3 1]+C


形如 R ( x , a x 2 + b x + c ) R(x,\sqrt{ax^2+bx+c}) R(x,ax2+bx+c )的积分

求形如 R ( x , a x 2 + b x + c ) R(x,\sqrt{ax^2+bx+c}) R(x,ax2+bx+c )的积分,其中 a ≠ 0 a\neq 0 a=0

这个无理式可以化为以下三种形式:

  • ∫ R ( x , ( x + p ) 2 + q 2 ) d x \int R(x,\sqrt{(x+p)^2+q^2})dx R(x,(x+p)2+q2 )dx
  • ∫ R ( x , ( x + p ) 2 − q 2 ) d x \int R(x,\sqrt{(x+p)^2-q^2})dx R(x,(x+p)2q2 )dx
  • ∫ R ( x , q 2 − ( x + p ) 2 ) d x \int R(x,\sqrt{q^2-(x+p)^2})dx R(x,q2(x+p)2 )dx

对这三种情况,可以由以下变换将它们化为三角有理式的积分:

  • x + p = q tan ⁡ t x+p=q\tan t x+p=qtant
  • x + p = q sec ⁡ t x+p=q\sec t x+p=qsect
  • x + p = q sin ⁡ t x+p=q\sin t x+p=qsint

例题

计算 ∫ x 2 − 2 x + 2 x − 1 d x \int \dfrac{\sqrt{x^2-2x+2}}{x-1}dx x1x22x+2 dx

解:
\qquad x − 1 = tan ⁡ t x-1=\tan t x1=tant,则 x 2 − 2 x + 2 = tan ⁡ 2 t + 1 = 1 cos ⁡ t \sqrt{x^2-2x+2}=\sqrt{\tan^2 t+1}=\dfrac{1}{\cos t} x22x+2 =tan2t+1 =cost1 1 cos ⁡ 2 t d t \dfrac{1}{\cos^2 t}dt cos2t1dt,于是

\qquad 原式 = 1 sin ⁡ t ⋅ 1 cos ⁡ 2 t d t = ∫ 1 ( cos ⁡ 2 t − 1 ) cos ⁡ 2 t ⋅ ( − sin ⁡ t ) d t =\dfrac{1}{\sin t}\cdot\dfrac{1}{\cos^2t}dt=\int\dfrac{1}{(\cos^2t-1)\cos^2 t}\cdot(-\sin t)dt =sint1cos2t1dt=(cos2t1)cos2t1(sint)dt

= ∫ ( 1 cos ⁡ 2 t − 1 − 1 cos ⁡ 2 t ) d ( cos ⁡ t ) = 1 2 ln ⁡ ∣ cos ⁡ t − 1 cos ⁡ t + 1 ∣ + 1 cos ⁡ t + C \qquad\qquad =\int(\dfrac{1}{\cos^2 t-1}-\dfrac{1}{\cos^2 t})d(\cos t)=\dfrac 12\ln|\dfrac{\cos t-1}{\cos t+1}|+\dfrac{1}{\cos t}+C =(cos2t11cos2t1)d(cost)=21lncost+1cost1+cost1+C

= 1 2 ln ⁡ ∣ ( cos ⁡ t − 1 ) 2 cos ⁡ t 2 − 1 ∣ + x 2 − 2 x + 2 + C = 1 2 ln ⁡ ( 1 − cos ⁡ t sin ⁡ t ) 2 + x 2 − 2 x + 2 + C \qquad\qquad =\dfrac 12\ln|\dfrac{(\cos t-1)^2}{\cos t^2-1}|+\sqrt{x^2-2x+2}+C=\dfrac 12\ln(\dfrac{1-\cos t}{\sin t})^2+\sqrt{x^2-2x+2}+C =21lncost21(cost1)2+x22x+2 +C=21ln(sint1cost)2+x22x+2 +C

= ln ⁡ ∣ 1 cos ⁡ t − 1 tan ⁡ x ∣ + x 2 − 2 x + 2 + C = ln ⁡ ∣ x 2 − 2 x + 2 − 1 x − 1 ∣ + x 2 − 2 x + 2 + C \qquad\qquad =\ln|\dfrac{\frac{1}{\cos t}-1}{\tan x}|+\sqrt{x^2-2x+2}+C=\ln|\dfrac{\sqrt{x^2-2x+2}-1}{x-1}|+\sqrt{x^2-2x+2}+C =lntanxcost11+x22x+2 +C=lnx1x22x+2 1+x22x+2 +C


总结

对于这些简单的无理函数的不定积分,要善于换元,将无理函数的不定积分转化为有理函数的不定积分,然后运用之前的知识来求解即可。

相关文章:

简单的无理函数的不定积分

前置知识: 直接积分法有理函数的不定积分 简单的无理函数的不定积分 对无理函数积分的基本方法就是通过换元将其化为有理函数的积分。下面讲讲几类无理函数积分的求法。 注: R ( u , v ) R(u,v) R(u,v)是由 u , v u,v u,v与常数经过有限次四则运算得…...

《国际联网安全保护管理办法》

1.基本信息 (1997年12月11日国务院批准 1997年12月16日公安部令第33号发布 根据2011年1月8日《国务院关于废止和修改部分行政法规的决定》修订) 2.办法内容 第一章 总 则 第一条为了加强对计算机信息网络国际联网的安全保护,维护公共…...

Redis常用命令

目录 一. 字符串string常用操作命令 二. 哈希hash常用操作命令 三. 列表list常用操作命令 四. 集合set常用操作命令 五. 有序集合sorted set常用操作命令 六. 通用命令 一. 字符串string常用操作命令 SET key value 设置指定key的值GET key 获取指定key的值 SETEX key…...

功能齐全的 DIY ESP32 智能手表设计之原理图讲解二

相关设计资料下载ESP32 智能手表带心率、指南针设计资料(包含Arduino源码+原理图+Gerber+3D文件).zip 目录 构建 ESP32 智能手表所需的组件 光照度传感器电路讲解...

烦恼的高考志愿

烦恼的高考志愿 题目背景 计算机竞赛小组的神牛 V 神终于结束了高考,然而作为班长的他还不能闲下来,班主任老 t 给了他一个艰巨的任务:帮同学找出最合理的大学填报方案。可是 v 神太忙了,身后还有一群小姑娘等着和他约会&#x…...

【地铁上的设计模式】--结构型模式:适配器模式

前面几篇文章我们学习了创建型模式,从本篇文章开始,我们将学习结构型模式。 什么是结构型模式 结构型模式是一种设计模式,它描述了如何将类或对象结合在一起形成更大的结构,以提供新的功能或实现更复杂的行为。结构型模式包括以…...

重大剧透:你不用ChatGPT,它砸你饭碗

早晨看到路透社报道,盖茨说,与其争论技术的未来,不如专注于如何更好地利用人工智能。 这可能是他对马斯克他们呼吁暂停AI研发6个月的一种回应吧。 有种古语说:天下大势,浩浩汤汤,顺之者昌,逆之者…...

状态机模式

状态模式 状态模式定义:使用场景角色定义1. State一抽象状态角色2. ConcreteState一-具体状态角色3. Context--环境角色 需求背景1. 订单状态抽象类2. 定义订单具体状态类并集成基类(抽象类)2.1 订单创建状态2.2 订单已支付状态2.3 订单已发货状态2.4 订…...

瑞吉外卖:后台系统登录功能

文章目录 需求分析代码开发创建实体类导入返回结果类Rcontroller、service与mapperlogin.html 需求分析 点击登录按钮后,浏览器以POST方式向employee/login提交username和password,服务器经过处理后向浏览器返回某种格式的数据,其中包含&…...

Linux拓展:链接库

一.说明 本篇博客介绍Linux操作系统下的链接库相关知识,由于相关概念已在Windows下链接库一文中介绍,本篇博客直接上操作。 二.静态链接库的创建和使用 1.提前看 这里主要介绍的是C语言的链接库技术,而在Linux下实现C语言程序&#xff0c…...

基于.Net开发的、支持多平台、多语言餐厅点餐系统

今天给大家推荐一套支持多平台、多语言版本的订单系统,适合餐厅、酒店等场景。 项目简介 这是基于.Net Framework开发的,支持手机、平板、PC等平台、多语言版本开源的点餐系统,非常适合餐厅、便利店、超市、酒店等,该系统基础功…...

Windows系统SSL/TLS安全协议介绍

支持安全加密的https底层使用的就是SSL/TLS,在发起https请求之前需要先建立TCP连接,之后再进行SSL/TLS协议协商,协商通过后才能发起https请求。本文将详细介绍SSL/TLS协议相关的内容。 之前在项目中就出现过客户端SSL/TLS版本过低,导致向服务器发起连接时被服务器拒绝的问题…...

ovs-vsctl 命令详解

ovs-vsctl 命令详解 网桥Bridge 创建 Bridge ovs-vsctl add-br br0 删除 Bridge ovs-vsctl del-br br0 列出 Bridge ovs-vsctl list-br 显示详情 ovs-vsctl show 端口 Port 添加端口 ovs-vsctl add-port br0 p1 其中br0 为上面添加的bridge p1可以是物理端口或者vN…...

具备“记忆”功能的VBA目录选择器

大家使用任意一款浏览器(例如:Chrome、Edge)下载文件时,如果【另存为】对话框选择C:\Download,那么下次再次使用【另存为】功能,对话框默认显示C:\Download,而不是根目录。 在VBA开发中调用目录…...

electron入门 | 手把手带electron项目初始化

Electron是一个基于Chromium和 Node.js,可以使用 HTML、CSS和JavaScript构建跨平台应用的技术框架,兼容 Mac、Windows 和 Linux。 目录 1.了解electron 2.开发环境 3.初始化 采坑插曲: 1.了解electron Electron 可以让你使用纯 JavaScrip…...

​力扣解法汇总2423. 删除字符使频率相同

目录链接: 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目: https://github.com/September26/java-algorithms 原题链接:力扣 描述: 给你一个下标从 0 开始的字符串 word ,字符串只包含小写英文字母。你…...

【超算/先进计算学习】日报8

目录 今日已完成任务列表遇到的问题及解决方案任务完成详细笔记阶段一阶段二阶段三阶段四 对自己的表现是否满意简述下次计划其他反馈 今日已完成任务列表 超算/高性能计算总结 遇到的问题及解决方案 无 任务完成详细笔记 阶段一 在学习的第一阶段,我们首先对需要…...

《LearnUE——基础指南:上篇—2》——GamePlay架构之Level和World

目录 听说世界是由多个Level组成的 1.2.1 引言 1.2.2 建造大陆(ULevel) 1.2.3构建世界(World) 1.2.4总结 听说世界是由多个Level组成的 1.2.1 引言 上小节谈到Actor和Component的关系,UE利用Actor的概念组成了世…...

IDEA部署tomcat项目

文章目录 只是部署一下看到这里即可war和war exploded的区别warwar exploded update的动作update resourcesupdate classes and resourcesredeployrestart server 解决了拿到了一个tomcat项目后如何将它部署到IDEA里面的问题。 file->open 选中pom.xml并open as project …...

IAM角色

Identity-based policy,它关联到特定的User/Role/Group上,指定这些主体能对哪些资源进行怎样的操作 Resource-based policy,它关联到具体的AWS资源上,指定哪些主体可以对这个资源做怎样的操作 aws受信任关系视为aws服务可以实现&a…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息&#xff0…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...