简单的无理函数的不定积分
前置知识:
- 直接积分法
- 有理函数的不定积分
简单的无理函数的不定积分
对无理函数积分的基本方法就是通过换元将其化为有理函数的积分。下面讲讲几类无理函数积分的求法。
注: R ( u , v ) R(u,v) R(u,v)是由 u , v u,v u,v与常数经过有限次四则运算得到的有理式。
形如 ∫ R ( x , a x + b c x + d ) d x \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx ∫R(x,cx+dax+b)dx的积分
求形如 ∫ R ( x , a x + b c x + d ) d x \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx ∫R(x,cx+dax+b)dx的积分,其中 a d ≠ b c ad\neq bc ad=bc。
令 t n = a x + b c x + d t^n=\dfrac{ax+b}{cx+d} tn=cx+dax+b,则 x = d t n − b a − c t n x=\dfrac{dt^n-b}{a-ct^n} x=a−ctndtn−b, d x = a d − b c ( a − c t n ) 2 n t n − 1 d t dx=\dfrac{ad-bc}{(a-ct^n)^2}nt^{n-1}dt dx=(a−ctn)2ad−bcntn−1dt,从而把原积分变换为有理函数的积分。
∫ R ( x , a x + b c x + d ) d x = ∫ R ( d t n − b a − c t n , t ) ⋅ a d − b c ( a − c t n ) 2 n t n − 1 d t \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx=\int R(\dfrac{dt^n-b}{a-ct^n},t)\cdot\dfrac{ad-bc}{(a-ct^n)^2}nt^{n-1}dt ∫R(x,cx+dax+b)dx=∫R(a−ctndtn−b,t)⋅(a−ctn)2ad−bcntn−1dt
例题
计算 ∫ 1 ( x − 1 ) ( x + 1 ) 2 3 d x \int \dfrac{1}{\sqrt[3]{(x-1)(x+1)^2}}dx ∫3(x−1)(x+1)21dx
解:
\qquad 令 t = x + 1 x − 1 3 t=\sqrt[3]{\dfrac{x+1}{x-1}} t=3x−1x+1,则 x = t 3 + 1 t 3 − 1 x=\dfrac{t^3+1}{t^3-1} x=t3−1t3+1, d x = − 6 t 2 ( t 3 − 1 ) 2 d t dx=-\dfrac{6t^2}{(t^3-1)^2}dt dx=−(t3−1)26t2dt,于是
\qquad 原式 = ∫ x + 1 x − 1 3 ⋅ 1 x + 1 d x = − ∫ t ⋅ ( 1 2 ⋅ t 3 − 1 t 3 ) ⋅ 6 t 2 ( t 3 − 1 ) 2 d t =\int \sqrt[3]{\dfrac{x+1}{x-1}}\cdot\dfrac{1}{x+1}dx=-\int t\cdot(\dfrac 12\cdot\dfrac{t^3-1}{t^3})\cdot \dfrac{6t^2}{(t^3-1)^2}dt =∫3x−1x+1⋅x+11dx=−∫t⋅(21⋅t3t3−1)⋅(t3−1)26t2dt
= − ∫ 3 t 3 − 1 d t = ∫ ( − 1 t − 1 + t + 2 t 2 + t + 1 ) d t \qquad\qquad =-\int \dfrac{3}{t^3-1}dt=\int(-\dfrac{1}{t-1}+\dfrac{t+2}{t^2+t+1})dt =−∫t3−13dt=∫(−t−11+t2+t+1t+2)dt
= − ln ∣ t − 1 ∣ + 1 2 ∣ t 2 + t + 1 ∣ + 3 arctan ( 2 t + 1 3 ) + C \qquad\qquad =-\ln|t-1|+\dfrac 12|t^2+t+1|+\sqrt 3\arctan(\dfrac{2t+1}{\sqrt 3})+C =−ln∣t−1∣+21∣t2+t+1∣+3arctan(32t+1)+C
= 1 2 ln t 3 − 1 ( t − 1 ) 3 + 3 arctan ( 2 t + 1 3 ) + C \qquad\qquad =\dfrac 12\ln\dfrac{t^3-1}{(t-1)^3}+\sqrt3\arctan(\dfrac{2t+1}{\sqrt 3})+C =21ln(t−1)3t3−1+3arctan(32t+1)+C
= 1 2 ln ∣ 2 x − 1 ( x + 1 x − 1 − 1 ) 3 ∣ + 3 arctan [ 2 3 x + 1 x − 1 3 + 1 3 ] + C \qquad\qquad =\dfrac 12\ln|\dfrac{\frac{2}{x-1}}{(\sqrt{\frac{x+1}{x-1}}-1)^3}|+\sqrt3\arctan[\dfrac{2}{\sqrt 3}\sqrt[3]{\dfrac{x+1}{x-1}}+\dfrac{1}{\sqrt 3}]+C =21ln∣(x−1x+1−1)3x−12∣+3arctan[323x−1x+1+31]+C
= − 1 2 ln ∣ x − 1 2 ∣ − 3 2 ln ∣ x + 1 x − 1 3 − 1 ∣ + 3 arctan [ 2 3 x + 1 x − 1 3 + 1 3 ] + C \qquad\qquad =-\dfrac12\ln|\dfrac{x-1}{2}|-\dfrac 32\ln|\sqrt[3]{\dfrac{x+1}{x-1}}-1|+\sqrt3\arctan[\dfrac{2}{\sqrt 3}\sqrt[3]{\dfrac{x+1}{x-1}}+\dfrac{1}{\sqrt 3}]+C =−21ln∣2x−1∣−23ln∣3x−1x+1−1∣+3arctan[323x−1x+1+31]+C
形如 R ( x , a x 2 + b x + c ) R(x,\sqrt{ax^2+bx+c}) R(x,ax2+bx+c)的积分
求形如 R ( x , a x 2 + b x + c ) R(x,\sqrt{ax^2+bx+c}) R(x,ax2+bx+c)的积分,其中 a ≠ 0 a\neq 0 a=0。
这个无理式可以化为以下三种形式:
- ∫ R ( x , ( x + p ) 2 + q 2 ) d x \int R(x,\sqrt{(x+p)^2+q^2})dx ∫R(x,(x+p)2+q2)dx
- ∫ R ( x , ( x + p ) 2 − q 2 ) d x \int R(x,\sqrt{(x+p)^2-q^2})dx ∫R(x,(x+p)2−q2)dx
- ∫ R ( x , q 2 − ( x + p ) 2 ) d x \int R(x,\sqrt{q^2-(x+p)^2})dx ∫R(x,q2−(x+p)2)dx
对这三种情况,可以由以下变换将它们化为三角有理式的积分:
- x + p = q tan t x+p=q\tan t x+p=qtant
- x + p = q sec t x+p=q\sec t x+p=qsect
- x + p = q sin t x+p=q\sin t x+p=qsint
例题
计算 ∫ x 2 − 2 x + 2 x − 1 d x \int \dfrac{\sqrt{x^2-2x+2}}{x-1}dx ∫x−1x2−2x+2dx
解:
\qquad 令 x − 1 = tan t x-1=\tan t x−1=tant,则 x 2 − 2 x + 2 = tan 2 t + 1 = 1 cos t \sqrt{x^2-2x+2}=\sqrt{\tan^2 t+1}=\dfrac{1}{\cos t} x2−2x+2=tan2t+1=cost1, 1 cos 2 t d t \dfrac{1}{\cos^2 t}dt cos2t1dt,于是
\qquad 原式 = 1 sin t ⋅ 1 cos 2 t d t = ∫ 1 ( cos 2 t − 1 ) cos 2 t ⋅ ( − sin t ) d t =\dfrac{1}{\sin t}\cdot\dfrac{1}{\cos^2t}dt=\int\dfrac{1}{(\cos^2t-1)\cos^2 t}\cdot(-\sin t)dt =sint1⋅cos2t1dt=∫(cos2t−1)cos2t1⋅(−sint)dt
= ∫ ( 1 cos 2 t − 1 − 1 cos 2 t ) d ( cos t ) = 1 2 ln ∣ cos t − 1 cos t + 1 ∣ + 1 cos t + C \qquad\qquad =\int(\dfrac{1}{\cos^2 t-1}-\dfrac{1}{\cos^2 t})d(\cos t)=\dfrac 12\ln|\dfrac{\cos t-1}{\cos t+1}|+\dfrac{1}{\cos t}+C =∫(cos2t−11−cos2t1)d(cost)=21ln∣cost+1cost−1∣+cost1+C
= 1 2 ln ∣ ( cos t − 1 ) 2 cos t 2 − 1 ∣ + x 2 − 2 x + 2 + C = 1 2 ln ( 1 − cos t sin t ) 2 + x 2 − 2 x + 2 + C \qquad\qquad =\dfrac 12\ln|\dfrac{(\cos t-1)^2}{\cos t^2-1}|+\sqrt{x^2-2x+2}+C=\dfrac 12\ln(\dfrac{1-\cos t}{\sin t})^2+\sqrt{x^2-2x+2}+C =21ln∣cost2−1(cost−1)2∣+x2−2x+2+C=21ln(sint1−cost)2+x2−2x+2+C
= ln ∣ 1 cos t − 1 tan x ∣ + x 2 − 2 x + 2 + C = ln ∣ x 2 − 2 x + 2 − 1 x − 1 ∣ + x 2 − 2 x + 2 + C \qquad\qquad =\ln|\dfrac{\frac{1}{\cos t}-1}{\tan x}|+\sqrt{x^2-2x+2}+C=\ln|\dfrac{\sqrt{x^2-2x+2}-1}{x-1}|+\sqrt{x^2-2x+2}+C =ln∣tanxcost1−1∣+x2−2x+2+C=ln∣x−1x2−2x+2−1∣+x2−2x+2+C
总结
对于这些简单的无理函数的不定积分,要善于换元,将无理函数的不定积分转化为有理函数的不定积分,然后运用之前的知识来求解即可。
相关文章:
简单的无理函数的不定积分
前置知识: 直接积分法有理函数的不定积分 简单的无理函数的不定积分 对无理函数积分的基本方法就是通过换元将其化为有理函数的积分。下面讲讲几类无理函数积分的求法。 注: R ( u , v ) R(u,v) R(u,v)是由 u , v u,v u,v与常数经过有限次四则运算得…...
《国际联网安全保护管理办法》
1.基本信息 (1997年12月11日国务院批准 1997年12月16日公安部令第33号发布 根据2011年1月8日《国务院关于废止和修改部分行政法规的决定》修订) 2.办法内容 第一章 总 则 第一条为了加强对计算机信息网络国际联网的安全保护,维护公共…...

Redis常用命令
目录 一. 字符串string常用操作命令 二. 哈希hash常用操作命令 三. 列表list常用操作命令 四. 集合set常用操作命令 五. 有序集合sorted set常用操作命令 六. 通用命令 一. 字符串string常用操作命令 SET key value 设置指定key的值GET key 获取指定key的值 SETEX key…...
功能齐全的 DIY ESP32 智能手表设计之原理图讲解二
相关设计资料下载ESP32 智能手表带心率、指南针设计资料(包含Arduino源码+原理图+Gerber+3D文件).zip 目录 构建 ESP32 智能手表所需的组件 光照度传感器电路讲解...
烦恼的高考志愿
烦恼的高考志愿 题目背景 计算机竞赛小组的神牛 V 神终于结束了高考,然而作为班长的他还不能闲下来,班主任老 t 给了他一个艰巨的任务:帮同学找出最合理的大学填报方案。可是 v 神太忙了,身后还有一群小姑娘等着和他约会&#x…...
【地铁上的设计模式】--结构型模式:适配器模式
前面几篇文章我们学习了创建型模式,从本篇文章开始,我们将学习结构型模式。 什么是结构型模式 结构型模式是一种设计模式,它描述了如何将类或对象结合在一起形成更大的结构,以提供新的功能或实现更复杂的行为。结构型模式包括以…...

重大剧透:你不用ChatGPT,它砸你饭碗
早晨看到路透社报道,盖茨说,与其争论技术的未来,不如专注于如何更好地利用人工智能。 这可能是他对马斯克他们呼吁暂停AI研发6个月的一种回应吧。 有种古语说:天下大势,浩浩汤汤,顺之者昌,逆之者…...
状态机模式
状态模式 状态模式定义:使用场景角色定义1. State一抽象状态角色2. ConcreteState一-具体状态角色3. Context--环境角色 需求背景1. 订单状态抽象类2. 定义订单具体状态类并集成基类(抽象类)2.1 订单创建状态2.2 订单已支付状态2.3 订单已发货状态2.4 订…...

瑞吉外卖:后台系统登录功能
文章目录 需求分析代码开发创建实体类导入返回结果类Rcontroller、service与mapperlogin.html 需求分析 点击登录按钮后,浏览器以POST方式向employee/login提交username和password,服务器经过处理后向浏览器返回某种格式的数据,其中包含&…...

Linux拓展:链接库
一.说明 本篇博客介绍Linux操作系统下的链接库相关知识,由于相关概念已在Windows下链接库一文中介绍,本篇博客直接上操作。 二.静态链接库的创建和使用 1.提前看 这里主要介绍的是C语言的链接库技术,而在Linux下实现C语言程序,…...

基于.Net开发的、支持多平台、多语言餐厅点餐系统
今天给大家推荐一套支持多平台、多语言版本的订单系统,适合餐厅、酒店等场景。 项目简介 这是基于.Net Framework开发的,支持手机、平板、PC等平台、多语言版本开源的点餐系统,非常适合餐厅、便利店、超市、酒店等,该系统基础功…...
Windows系统SSL/TLS安全协议介绍
支持安全加密的https底层使用的就是SSL/TLS,在发起https请求之前需要先建立TCP连接,之后再进行SSL/TLS协议协商,协商通过后才能发起https请求。本文将详细介绍SSL/TLS协议相关的内容。 之前在项目中就出现过客户端SSL/TLS版本过低,导致向服务器发起连接时被服务器拒绝的问题…...

ovs-vsctl 命令详解
ovs-vsctl 命令详解 网桥Bridge 创建 Bridge ovs-vsctl add-br br0 删除 Bridge ovs-vsctl del-br br0 列出 Bridge ovs-vsctl list-br 显示详情 ovs-vsctl show 端口 Port 添加端口 ovs-vsctl add-port br0 p1 其中br0 为上面添加的bridge p1可以是物理端口或者vN…...
具备“记忆”功能的VBA目录选择器
大家使用任意一款浏览器(例如:Chrome、Edge)下载文件时,如果【另存为】对话框选择C:\Download,那么下次再次使用【另存为】功能,对话框默认显示C:\Download,而不是根目录。 在VBA开发中调用目录…...

electron入门 | 手把手带electron项目初始化
Electron是一个基于Chromium和 Node.js,可以使用 HTML、CSS和JavaScript构建跨平台应用的技术框架,兼容 Mac、Windows 和 Linux。 目录 1.了解electron 2.开发环境 3.初始化 采坑插曲: 1.了解electron Electron 可以让你使用纯 JavaScrip…...
力扣解法汇总2423. 删除字符使频率相同
目录链接: 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目: https://github.com/September26/java-algorithms 原题链接:力扣 描述: 给你一个下标从 0 开始的字符串 word ,字符串只包含小写英文字母。你…...

【超算/先进计算学习】日报8
目录 今日已完成任务列表遇到的问题及解决方案任务完成详细笔记阶段一阶段二阶段三阶段四 对自己的表现是否满意简述下次计划其他反馈 今日已完成任务列表 超算/高性能计算总结 遇到的问题及解决方案 无 任务完成详细笔记 阶段一 在学习的第一阶段,我们首先对需要…...

《LearnUE——基础指南:上篇—2》——GamePlay架构之Level和World
目录 听说世界是由多个Level组成的 1.2.1 引言 1.2.2 建造大陆(ULevel) 1.2.3构建世界(World) 1.2.4总结 听说世界是由多个Level组成的 1.2.1 引言 上小节谈到Actor和Component的关系,UE利用Actor的概念组成了世…...

IDEA部署tomcat项目
文章目录 只是部署一下看到这里即可war和war exploded的区别warwar exploded update的动作update resourcesupdate classes and resourcesredeployrestart server 解决了拿到了一个tomcat项目后如何将它部署到IDEA里面的问题。 file->open 选中pom.xml并open as project …...
IAM角色
Identity-based policy,它关联到特定的User/Role/Group上,指定这些主体能对哪些资源进行怎样的操作 Resource-based policy,它关联到具体的AWS资源上,指定哪些主体可以对这个资源做怎样的操作 aws受信任关系视为aws服务可以实现&a…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
省略号和可变参数模板
本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...

MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...