【python】keras包:深度学习( RNN循环神经网络 Recurrent Neural Networks)
RNN循环神经网络
应用:
物体移动位置预测、股价预测、序列文本生成、语言翻译、从语句中自动识别人名、
问题总结 这类问题,都需要通过历史数据,对未来数据进行预判
序列模型
两大特点
- 输入(输出)元素具有顺序关系,有前后关系
- 输入输出不定长。如:文章生成、聊天机器人
简单理解

以人名识别为例

常见结构
多输入单输出结构
eg. 自然语言文字的情感识别
输入:语句(文字为多个输入信息)
输出:情感判断(是积极的还是消极的)
单输入多输出结构
eg. (序列数据生成器)根据关键词生成文章、音乐等
输入:关键词(单维信息)
输出:文章(多元信息)
多输入多输出结构
eg. 语言翻译
输入:中文(n维数据)
输出:英文(m维数据)
普通RNN模型
越新的信息对结果的影响占比越大,越旧的信息对结果的影响占比越小
缺陷 : 可能导致重要的旧信息丢失(图中蓝色在y中的占比即表示旧信息在结果中的影响占比)

长短期记忆网络(LSTM)
算法逻辑:增加记忆细胞 C[i],以记忆重要信息

双向循环神经网络(BRNN)
简单理解 : 普通循环神经网络,只根据上文推测下文;双向循环神经网络,则是根据上文和下文来推测当前片段。
深层循环神经网络(DRNN)
简单理解 单层RNN+MLP,实现更好的拟合效果
实战一:RNN实现股价预测
算法效果
给定(数据-时间轴)数据集,
设定Input_shape = (samples, time_steps, features) ,
sample表示样本数量(默认为:根据输入数据自动计算)
time_steps表示每次用前time_steps个数据预测下一个数据
features 表示样本的特征维数
生成预测曲线
算法流程:
Step 1. 数据载入 与 预处理
序列切断:按time_steps的长度,对被预测数据进行切断
# 数据切断函数
import numpy as np
def extract_data(data,time_step):x=[] #前time_step个时间点的数据y=[] #当前被预测时间点的数据for i in range(len(data)-time_step):x.append( [a for a in data[i:i+time_step] ] )y.append( data[i+time_step] )x = np.array(x)x = x.reshape(x.shape[0],x.shape[1],1)y = np.array(y)return x,y
time_step = int(input("输入参考时间区间的长度:"))
x,y = extract_data(price_norm,time_step)
#print(x.shape)
Step 2. 建立RNN模型
from keras.models import Sequential
from keras.layers import Dense,SimpleRNN
#顺序模型
model = Sequential()
#RNN层
model.add( SimpleRNN(units=5, #神经元个数input_shape = (time_step,1),# 输入格式:以前time_step为根据,预测当前位置# 数据维数为 1activation = 'relu',# 激活函数用relu)
)
#输出层
model.add(Dense(units=1,activation='linear'))
#参数设置
model.compile(optimizer='adam', loss='mean_squared_error', #平方差metrics=['accuracy'] #这个模型看accuracy没有意义
)
model.summary()
Step 3. 预测
pred_y_train = model.predict(x) * max(price) #逆归一化
y_train = y*max(price)
#训练数据-预测训练数据预览
from matplotlib import pyplot as plt
fig1 = plt.figure(figsize=(8,5))
truth, = plt.plot(y_train)
pred, = plt.plot(pred_y_train)
plt.title('close price')
plt.xlabel('date')
plt.ylabel('price')
plt.legend( (pred,truth), ('pred_line','true_line'))
plt.show()
实战二:LSTM自动生成文本
算法效果
给定(文本)数据集,
构建 (文本-编码)字典
输入 编码后的文本数据
生成预测文本的编码
编码转文本
算法流程
Step 1. 数据载入 与 预处理
Step 2. 建立RNN模型
Step 3. 预测
相关文章:
【python】keras包:深度学习( RNN循环神经网络 Recurrent Neural Networks)
RNN循环神经网络 应用: 物体移动位置预测、股价预测、序列文本生成、语言翻译、从语句中自动识别人名、 问题总结 这类问题,都需要通过历史数据,对未来数据进行预判 序列模型 两大特点 输入(输出)元素具有顺序关系…...
vue框架快速入门
vue 1、第一个Vue程序1.1、什么是Vue程序1.2、为什么要使用MVVM1.3、Vue1.4、第一个vue程序 2、基础语法2.1、v-bind2.2、v-if, v-else2.3、v-for2.4、v-on 3、Vue表单双绑、组件3.1、什么是双向数据绑定3.2、在表单中使用双向数据绑定3.3、什么是组件 4、Axios异步…...
Java连接顺丰开放平台
今天使用Java去访问顺丰的开放平台时,JSON转换一直不成功,最终发现是 可以看到这里是 "apiResultData": "{\"success\": .........它是以 " 开头的!!!如果是对象的话,那么…...
前端三剑客 - HTML
前言 前面都是一些基础的铺垫,现在就正式进入到web开发环节了。 我们的目标就是通过学习 JavaEE初阶,搭建出一个网站出来。 一个网站分成两个部分: 前端(客户端) 后端(服务器) 通常这里的客户端…...
【计算机视觉 | 自然语言处理】BLIP:统一视觉—语言理解和生成任务(论文讲解)
文章目录 一、前言二、试玩效果三、研究背景四、模型结构五、Pre-training objectives六、CapFilt架构七、Experiment八、结论 一、前言 今天我们要介绍的论文是 BLIP,论文全名为 Bootstrapping Language-Image Pre-training for Unified Vision-Language Understa…...
c++基础-运算符
目录 1关系运算符 2运算符优先级 3关系表达式的书写 代码实例: 下面是面试中可能遇到的问题: 1关系运算符 C中有6个关系运算符,用于比较两个值的大小关系,它们分别是: 运算符描述等于!不等于<小于>大于<…...
美术馆c++
题目: 杜老师非常喜欢玩一种叫做“美术馆”的数字游戏,蜗蜗看了之后决定也来试一试,他改编了这个游戏,规则如下: 有一个 n� 行 m� 列的方格,每一个格子中有一个数,数字…...
浅谈MySQL索引以及执行计划
MySQL索引及执行计划 🐪索引的作用🐫索引的分类(算法)🦙BTREE索引算法演变🦒Btree索引功能上的分类4.1 辅助索引4.2 聚集索引4.3 辅助索引和聚集索引的区别 🐘辅助索引分类🦏索引树高…...
在c++项目中使用rapidjson(有具体的步骤,十分详细) windows10系统
具体的步骤: 先下载rapidjson的依赖包 方式1:直接使用git去下载 地址:git clone https://github.com/miloyip/rapidjson.git 方式2:下载我上传的依赖包 将依赖包引入到项目中 1 将解压后的文件放在你c项目中 2 将rapidjson文…...
编译方式汇总:Makefile\configure\autogen.sh\configure.ac、Makefile.am文件
一、前言 文章目的:针对各种开源项目,由于部分项目文档写的不够详细,(或者是我太菜了),没有进行详细的介绍怎么编译该项目,导致花费过多时间在查找如何编译该项目上。因此该篇文章针对目前遇到的…...
explicit关键字
explicit关键字只能用来修饰构造函数。使用explicit可以禁止编译器自动调用拷贝初始化,还可以禁止编译器对拷贝函数的参数进行隐式转换。 那么什么是隐式转换呢? 类 命名 参数; //有参构造类 命名 命名对象; //拷贝构造&#x…...
[优雅的面试] 你了解python的对象吗
前情提要:小编面试,结果面试官着急去吃饭~又约了这次来面,不晓得又会问什么问题呢? 面试官大佬:小伙子来的挺准时的(赞赏的表情~),今天咱们接着聊哈,小伙子,你有对象了没?…...
【hello Linux】线程概念
目录 1. 线程概念的铺设 2. Linux线程概念 2.1 什么是线程 2.2 线程的优点 2.3 线程的缺点 2.4 线程异常 2.5 线程用途 3. Linux进程VS线程 4. Linux线程控制 4.1 POSIX线程库 4.2 创建线程 4.3 进程ID和线程ID 4.4 线程终止 4.5 线程等待 4.6 分离线程 Linux🌷 1…...
JavaWeb07(MVC应用01[家居商城]连接数据库)
目录 一.什么是MVC设计模式? 1.2 MVC设计模式有什么优点? 二.MVC运用(家居商城) 2.1 实现登录 2.2 绑定轮播【随机三个商品】 2.2.1 效果预览 index.jsp 2.3 绑定最新上架&热门家居 2.3.1 效果预览 2.3.2 代码实现 数据…...
如何使用电商API接口API接口如何应用
使用API接口 API(应用程序接口)是现代软件开发中必不可少的一部分,它通常允许软件与其他软件或服务进行交互。使用API可以大大提高软件的灵活性和可扩展性,并允许您轻松添加新的功能和服务,因此,API接口的…...
【移动端网页布局】流式布局案例 ⑥ ( 多排按钮导航栏 | 设置浮动及宽度 | 设置图片样式 | 设置文本 )
文章目录 一、多排按钮导航栏样式及核心要点1、实现效果2、总体布局设计3、设置浮动及宽度4、设置图片样式5、设置文本 二、完整代码实例1、HTML 标签结构2、CSS 样式3、展示效果 一、多排按钮导航栏样式及核心要点 1、实现效果 要实现下面的导航栏效果 ; 2、总体布局设计 该导…...
1. 先从云计算讲起
本章讲解知识点 什么是云计算? 为什么要用云计算? 物理服务器与云服务器对比 云计算服务类型 云计算部署类型 1. 什么是云计算? 云计算是一种通过计算机网络以服务的方式提供动态可伸缩的虚拟化资源的计算模式。按照服务层次分为IaaS、…...
ZooKeeper安装与配置集群
简介: ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,它提供了一个分布式环境中的高可用性、高性能、有序访问的数据存储,可以让分布式应用程…...
浅谈Mysql的RR和RC隔离级别的主要区别
MySQL默认为RR级别 首先默认RR是因为mysql为了保证在主从同步过程中数据的安全的问题(涉及到binlog三种格式)。 就是说两个并发事务数AB,A先开启事物最后提交也是最后,事务B开启和提交都在A内部,由于隔离级别不同&…...
Build生成器模式
设计模式简述 设计模式的核心在于提供了相关问题的解决方案,使得人们可以更加简单方便地复用成功的设计和体系结构。 生成器模式(创建型设计模式) 意图:将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
