当前位置: 首页 > news >正文

f(x)与|f(x)|,f ‘ (x),F(x)常见关系。

1.f(x)与|f(x)|关系。

1.连续关系。(f(x)在"[a,b]上连续" => |f(x)|在"[a,b]连续")

①如果f(x)在[a,b]上连续。则|f(x)|在[a,b]上连续. (因为f(x)在x0的连续点=>x0必为|f(x)|的连续点

 注:”[a,b]连续“包括:①f(x)在[a,b]连续②f(x)在[a,b]上有界,且仅有有限间断点③f(x)在[a,b]只有有限个第一类间断点。

证明:f(x)在"[a,b]上连续" => |f(x)|在"[a,b]连续"
在这里插入图片描述

2.可积关系。(f(x)可积 => |f(x)|可积)
证明略。
反例:在这里插入图片描述
f(x)有无限个间断点,f(x)不可积。但是|f(x)|可积。

3.可导关系。
①f(x)在x0可导,则当f(x0) ≠ 0时
f(x)可导 <=> |f(x)|可导

②f(x)在x0可导,则当f(x0) = 0时,有两种情况。
-------1.若f’(x₀) = 0,则 <=> |f(x)| 在点x₀处可导,且|f’(x₀)|=0。
-------2.若f’(x₀) ≠ 0,则| f(x)|在点x₀处不可导

证明当f’(x0) ≠ 0时,不成立。成立同样如此证明

在这里插入图片描述

2.f(x)与f ’ (x)关系。

在有界区间(a,b)上有如下关系:
①f ‘(x)在(a,b)上有界 => f(x) 在(a,b)一定有界。
②f (x) 在(a,b)上无界 => f ’ (x)在(a,b)一定无界。
③设f(x) 在 x = a 处n阶可导,若当x - > a时f(x)是x - a 的n阶无穷小,则 f ’ (x)是 x - a 的n - 1 阶无穷小。
证明①:②类似
在这里插入图片描述

证明③:

在无界区间上没有确定性关系:
若f(x) = x,则f ’ (x) = 1在(a,+∞)有界,但f(x)在(a,+∞)无界。
若f(x) = sin2x,则f(x)在(a,+∞)有界,但是f ’ (x)在(a,+∞)无界。

3.f(x)与F(x)关系。

f(x)在(a,b)上有原函数F(x),则在(a,b)上:
①f(x)不一定连续
②f(x)不一定时初等函数
③F(x)不一定时初等函数
④F’(x) = f(x),因此F(x)连续

4.f(x)与其对应的变上限积分∫ f(t) dt(积分限a到x)关系。

在这里插入图片描述
①设x->a时候 , f(x) 是 x - a 的 n 阶无穷小。若f(x)连续,则 ”∫ f(t) dt(积分限a到x)(图片)“ 是 x - a 的 n + 1阶无穷小。

5.lim(x->x0)f’(x)与f’(x0)关系。

在这里插入图片描述
注意:连续的定义:如果f(x)在X0左右极限相等 <=> 在f(x) 在 X0连续 <=>该点的极限 = 该点的函数值。仅适用于f(x),而不适用于任意阶导数。
因为f(x)不能保证在 X0 点可导,甚至连续,极限存在都保证不了,故不能直接推出导数存在。
针对上述有总结以下情况:
1.f(x)在 X0 可导 => f(x) 在 X0 连续。(可导必连续)

2.lim f ’ (x) 存在 =/> f(x)在 X0 连续。(在 x -> X0时 上述有解释)

3.设 f (x) 在 x - > X0的空心领域内可导,且 lim f(x) = A (x -> X0) :
①若f(x) 在 x = x0 不连续 => f ’ (x0) 不存在。(不连续肯定不可导)
②若f(x) 在 x = x0 连续 => f’ (x0) = A。
证②:
在这里插入图片描述
4.设 f (x) 在 x - > X0的空心领域内可导,且 lim f ’ (x) = ∞ (x -> x0):
①若f(x) 在 x = x0 不连续 => f ’ (x0) 不存在。(不连续肯定不可导)
②若f(x) 在 x = x0 连续 => f’ (x0) = ∞ 。(仍然洛必达证)

5.设 f (x) 在 x - > X0的空心领域内可导,且 lim f ’ (x) = 不存在 (x -> x0):
看题,暂时没结论。

相关文章:

f(x)与|f(x)|,f ‘ (x),F(x)常见关系。

1.f(x)与|f(x)|关系。 1.连续关系。(f(x)在"[a,b]上连续" > |f(x)|在"[a,b]连续") ①如果f(x)在[a,b]上连续。则|f(x)|在[a,b]上连续. &#xff08;因为f(x)在x0的连续点>x0必为|f(x)|的连续点&#xff09; 注&#xff1a;”[a,b]连续“包括&#…...

今天面了一个来字节要求月薪23K,明显感觉他背了很多面试题...

最近有朋友去字节面试&#xff0c;面试前后进行了20天左右&#xff0c;包含4轮电话面试、1轮笔试、1轮主管视频面试、1轮hr视频面试。 据他所说&#xff0c;80%的人都会栽在第一轮面试&#xff0c;要不是他面试前做足准备&#xff0c;估计都坚持不完后面几轮面试。 其实&…...

如何使用二元三次回归分析建立预测模型?(分析、原理、代码示例)

二元三次回归是一种用于建立两个自变量与一个因变量之间关系的回归模型&#xff0c;常用于数据分析和预测。下面我会更详细地解释一下二元三次回归的原理、分析和示例代码。 1、原理 二元三次回归分析用多项式回归建立预测模型&#xff0c;其中包括两个自变量&#xff08;通常…...

面向万物智联的应用框架的思考和探索(上)

原文&#xff1a;面向万物智联的应用框架的思考和探索&#xff08;上&#xff09;&#xff0c;点击链接查看更多技术内容。 应用框架&#xff0c;是操作系统连接开发者生态&#xff0c;实现用户体验的关键基础设施。其中&#xff0c;开发效率和运行体验是永恒的诉求&#xff0c…...

《Python机器学习基础教程》第1章学习笔记

目录 第1章 引言 1.1 为何选择机器学习 1.1.1 机器学习能够解决的问题 第1章 引言 机器学习又称为预测分析或统计学习&#xff0c;是一个交叉学科&#xff0c;是从数据中提取知识。 1.1 为何选择机器学习 智能应用早期&#xff0c;使用专家设计的规则体系来设计。 缺点&…...

ClickHouse 内存管理是如何实现的

概述 本文介绍Clickhouse内存管理的实现原理。通过本文的分析&#xff0c;可以对Clickhouse的内存管理有一个概要的理解。 Clickouse内存管理组成 ClickHouse 使用内存管理系统来控制内存资源的分配和释放。内存管理系统的主要组成部分是&#xff1a; 内存池&#xff1a;Cl…...

docker容器技术

什么是docker Docker 使用 Google 公司推出的 Go 语言 进行开发实现&#xff0c;基于 Linux 内核的 cgroup&#xff0c;namespace&#xff0c;以及 OverlayFS 类的 Union FS 等技术&#xff0c;对进程进行封装隔离&#xff0c;属于 操作系统层面的虚拟化技术。由于隔离的进程独…...

设计模式七大设计原则

文章目录 1、什么是设计模式2、单一职责原则3、开闭原则4、接口隔离原则5、依赖倒置原则6、迪米特法则&#xff08;最少知道原则&#xff09;7、里式替换原则8、组合优于继承 设计模式主要是为了满足一个字 变&#xff0c;这个字&#xff0c;可能是需求变更、可能是场景变更&a…...

【Hello Network】TCP协议相关理解

作者&#xff1a;小萌新 专栏&#xff1a;网络 作者简介&#xff1a;大二学生 希望能和大家一起进步 本篇博客简介&#xff1a;补充下对于TCP协议的各种理解 TCP协议相关实验 TCP相关试验理解CLOSE_WAIT状态理解TIME_WAIT状态解决TIME_WAIT状态引起的bind失败的方法理解listen的…...

实施CRM目标有哪几步?如何制定CRM目标?

在当今竞争激烈的商业环境中&#xff0c;与客户建立持久的关系是企业重要的工作。CRM客户管理系统能有效帮助企业管理优化流程、管理客户&#xff0c;提高销售成功率&#xff0c;推动收入增长。那么您了解如何实施CRM吗&#xff1f;下面说说实施CRM目标是什么&#xff0c;如何设…...

船舶建造概论(船舶建造工艺任务与现代造船模式)

船舶建造概论 1 船舶建造概论1.1 船舶建造工艺主要任务1.2 船舶建造流程&#xff08;1&#xff09;钢材料预处理&#xff08;2&#xff09; 钢材料加工&#xff08;3&#xff09;分段制作&#xff08;4&#xff09;总段制作&#xff08;5&#xff09;船台合拢&#xff08;6&…...

项目内训(2023.5.6)

目录 Nacos是什么&#xff1f; 领域模型是什么&#xff1f; domain模块一般是干什么的&#xff1f; 在小乌龟中合并其他分支的作用是什么&#xff1f; nacos的配置文件 服务集群、服务提供、服务更加灵活庞大、消费服务、访问比较麻烦&#xff0c;A和B服务一起访问 系统结…...

【操作系统OS】学习笔记第二章 进程与线程(下)【哈工大李治军老师】

基于本人观看学习 哈工大李治军老师主讲的操作系统课程 所做的笔记&#xff0c;仅进行交流分享。 特此鸣谢李治军老师&#xff0c;操作系统的神作&#xff01; 如果本篇笔记帮助到了你&#xff0c;还请点赞 关注 支持一下 ♡>&#x16966;<)!! 主页专栏有更多&#xff0…...

Linux命令集(Linux文件管理命令--rmdir指令篇)

Linux命令集&#xff08;Linux文件管理命令--rmdir指令篇&#xff09; Linux文件管理命令集&#xff08;rmdir指令篇&#xff09;5. rmdir(remove directory)1. 删除空的目录 folder12. 强制删除目录 folder1&#xff08;包括非空目录&#xff09;3. 递归删除目录及其目录下所有…...

在技术圈超卷的当下,学历到底是敲门砖还是枷锁?

前言 最近&#xff0c;突然之间被“孔乙己文学”刷屏了&#xff0c;短时间内“孔乙己文学”迅速走红&#xff0c;孔乙己是中国文学中的一位经典人物&#xff0c;他的长衫被认为是他的象征之一&#xff0c;孔乙己的长衫折射出很多现象&#xff0c;既有社会的&#xff0c;也有教育…...

Linux cgroup

前言 Cgroup和namespace类似&#xff0c;也是将进程进程分组&#xff0c;但是目的与namespace不一样&#xff0c;namespace是为了隔离进程组之前的资源&#xff0c;而Cgroup是为了对一组进程进行统一的资源监控和限制。 Cgroup的组成 subsystem 一个subsystem就是一个内核模…...

PID整定二:基于Ziegler-Nichols的频域响应

PID整定二&#xff1a;基于Ziegler-Nichols的频域响应 1参考2连续Ziegler-Nichols方法的PID整定2.1整定方法2.2仿真示例 1参考 1.1根轨迹图的绘制及分析 1.2计算机控制技术01-3.4离散系统的根轨迹分析法 1.3PID控制算法学习笔记 2连续Ziegler-Nichols方法的PID整定 2.1整定…...

【tkinter 专栏】专栏前言

文章目录 前言本章内容导图1. tkinter 工具及特点2. 为什么使用 Python 进行 GUI 设计?2.1 Python 可以做什么2.2 使用 tkinter 可以干什么?3. 如何学习使用 tkinter 进行 GUI 设计?4. 开发环境搭建4.1 Python 的版本4.2 安装 Python4.2.1 下载 Python 安装包4.2.2 安装 Pyt…...

解决Linux中文字体模糊的4种方法

在Linux中&#xff0c;字体是非常重要的一部分&#xff0c;因为它们直接影响到用户的视觉体验。如果Linux字体模糊不清&#xff0c;那么用户将很难阅读文本&#xff0c;这将极大地降低用户的工作效率。本文将介绍Linux Mint中文字体模糊的问题&#xff0c;并提供一些解决方案。…...

【Android入门到项目实战-- 7.3】—— 如何调用手机摄像头和相册

目录 一、调用摄像头拍照 二、打开相册选择照片 学完本篇文章可以收获如何调用手机的摄像头和打开手机相册选择图片功能。 一、调用摄像头拍照 先新建一个CameraAlbumTest项目。 修改activity_main.xml,代码如下&#xff1a; 按钮打开摄像头&#xff0c;ImageView将拍到的…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...