算法刷题打卡第90天:表现良好的最长时间段
表现良好的最长时间段
难度:中等
给你一份工作时间表 hours,上面记录着某一位员工每天的工作小时数。
我们认为当员工一天中的工作小时数大于 8 小时的时候,那么这一天就是「劳累的一天」。
所谓「表现良好的时间段」,意味在这段时间内,「劳累的天数」是严格 大于「不劳累的天数」。
请你返回「表现良好时间段」的最大长度。
示例 1:
输入:hours = [9,9,6,0,6,6,9]
输出:3
解释:最长的表现良好时间段是 [9,9,6]。
示例 2:
输入:hours = [6,6,6]
输出:0
前置知识:前缀和
对于数组 nums\textit{nums}nums,定义它的前缀和 s[0]=0\textit{s}[0]=0s[0]=0,s[i+1]=∑j=0inums[j]。\textit{s}[i+1] = \sum\limits_{j=0}^{i}\textit{nums}[j]。s[i+1]=j=0∑inums[j]。
例如 nums=[1,2,−1,2]\textit{nums}=[1,2,-1,2]nums=[1,2,−1,2],对应的前缀和数组为 s=[0,1,3,2,4]s=[0,1,3,2,4]s=[0,1,3,2,4]。
通过前缀和,我们可以把子数组的元素和转换成两个前缀和的差,即
∑j=leftrightnums[j]=∑j=0rightnums[j]−∑j=0left−1nums[j]=s[right+1]−s[left]\sum_{j=\textit{left}}^{\textit{right}}\textit{nums}[j] = \sum\limits_{j=0}^{\textit{right}}\textit{nums}[j] - \sum\limits_{j=0}^{\textit{left}-1}\textit{nums}[j] = \textit{s}[\textit{right}+1] - \textit{s}[\textit{left}] j=left∑rightnums[j]=j=0∑rightnums[j]−j=0∑left−1nums[j]=s[right+1]−s[left]
例如 nums\textit{nums}nums的子数组 [2,−1,2][2,-1,2][2,−1,2] 的和就可以用 s[4]−s[1]=4−1=3s[4]-s[1]=4-1=3s[4]−s[1]=4−1=3 算出来。
注:为方便计算,常用左闭右开区间 [left,right)[\textit{left},\textit{right})[left,right) 来表示子数组,此时子数组的和为 s[right]−s[left]\textit{s}[\textit{right}] - \textit{s}[\textit{left}]s[right]−s[left],子数组的长度为 right−left\textit{right}-\textit{left}right−left。
方法一:单调栈
思路:
先把问题转换到我们熟悉的东西上。
「劳累天数大于不劳累天数」等价于「劳累天数减去不劳累天数大于 000」。
那么把劳累的一天视作 nums[i]=1\textit{nums}[i]=1nums[i]=1,不劳累的一天视作 nums[i]=−1\textit{nums}[i]=-1nums[i]=−1,则问题变为:
计算 nums\textit{nums}nums 的最长子数组,其元素和大于 000。
既然说到了「子数组的元素和」,那么利用前缀和 sss,将问题变为:
找到两个下标 iii 和 jjj,满足 j<ij<ij<i 且 s[j]<s[i]s[j]<s[i]s[j]<s[i],最大化 i−ji-ji−j 的值。
想一想,哪些值可以作为 jjj(最长子数组的左端点)呢?

复杂度分析:
- 时间复杂度: O(n)O(n)O(n),其中 nnn 为 hours\textit{hours}hours的长度。注意每个元素至多入栈出栈各一次,因此二重循环的时间复杂度是 O(n)O(n)O(n) 的。
- 空间复杂度: O(n)O(n)O(n)。
class Solution:def longestWPI(self, hours: List[int]) -> int:hours_sum, start = [0] * (len(hours) + 1), [0]for i in range(len(hours)):# 前缀和hours_sum[i+1] = hours_sum[i] + 1 if hours[i] > 8 else hours_sum[i] - 1# 可能是开头的位置if hours_sum[start[-1]] > hours_sum[i+1]:start.append(i+1)res = 0for i in range(len(hours), 0, -1):while start and hours_sum[i] > hours_sum[start[-1]]:res = max(res, i - start.pop())return res
方法二:利用前缀和的连续性
虽说方法一更加通用,不过利用 nums\textit{nums}nums中只有 111 和 −1−1−1 的特点,可以做到一次遍历。
考虑 s[i]s[i]s[i]:
- 如果 s[i]>0s[i]>0s[i]>0,那么 j=0j=0j=0 就是最远的左端点,因为 s[0]=0s[0]=0s[0]=0,故 s[i]−s[0]=s[i]>0s[i]-s[0]=s[i]>0s[i]−s[0]=s[i]>0,符合要求。
- 如果 s[i]≤0s[i]\le 0s[i]≤0,那么 jjj 就是 s[i]−1s[i]-1s[i]−1 首次出现的位置。为什么是 s[i]−1s[i]-1s[i]−1 而不是其它更小的数?这是因为前缀和是从 000 开始的,由于 nums\textit{nums}nums 中只有 111 和 −1−1−1,那么相邻前缀和的差都恰好为 111,要想算出比 s[i]−1s[i]-1s[i]−1 更小的数,必然会先算出 s[i]−1s[i]-1s[i]−1,那么这些更小数必然在 s[i]−1s[i]-1s[i]−1 首次出现的位置的右边。

代码实现时,可以用哈希表记录每个 s[i]s[i]s[i] 首次出现的下标。
不过,由于我们只需要考虑值在闭区间 [−n,0][-n,0][−n,0] 内的前缀和,用数组记录是更加高效的。同时,为了避免用负数访问数组,可以在计算过程中把前缀和取反。
复杂度分析:
- 时间复杂度: O(n)O(n)O(n),其中 nnn 为 hours\textit{hours}hours的长度。
- 空间复杂度: O(n)O(n)O(n)。
class Solution:def longestWPI(self, hours: List[int]) -> int:pos = [0] * (len(hours) + 2) # 记录前缀和首次出现的位置res = sums = 0for i, j in enumerate(hours, 1):sums += -1 if j > 8 else 1 # 取反,改为减法if sums < 0:res = ielse:if pos[sums+1]: # 原本是 sums-1,取反改为 sums+1res = max(res, i-pos[sums+1]) # 这里手写 if 会更快if pos[sums] == 0:pos[sums] = ireturn res
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/longest-well-performing-interval/solutions/2110211/liang-chong-zuo-fa-liang-zhang-tu-miao-d-hysl/
相关文章:
算法刷题打卡第90天:表现良好的最长时间段
表现良好的最长时间段 难度:中等 给你一份工作时间表 hours,上面记录着某一位员工每天的工作小时数。 我们认为当员工一天中的工作小时数大于 8 小时的时候,那么这一天就是「劳累的一天」。 所谓「表现良好的时间段」,意味在这…...
Python语言零基础入门教程(十七)
Python 文件I/O 本章只讲述所有基本的 I/O 函数,更多函数请参考Python标准文档。 #### 打印到屏幕 最简单的输出方法是用print语句,你可以给它传递零个或多个用逗号隔开的表达式。此函数把你传递的表达式转换成一个字符串表达式,并将结果写…...
C语言中大小端问题
目录 一、什么是大小端 二、 举个例子 三、大小端演示 四、解释"二"中举例的问题 五、怎么判断是大端还是小端 六、一个题目 一、什么是大小端 大端模式(大端字节序存储):就是高位字节数据存放在内存的低地址端ÿ…...
vue2+微前端qiankun从搭建到部署的实践(主子应用切换;集成vue3+vite3子应用)
一、最终效果 二、微前端(qiankun)介绍及为什么选择用微前端,可以看官网 三、目录结构如下 四、具体配置 一、主应用配置 1、主应用技术栈 Vue-cli4搭建项目Vue2Element-Uiqiankun;Vue2Element-Uiqiankun 2、搭建好主项目&…...
怎么代理微信小程序创业?
随着微信的兴起,小程序已经成为了人们生活中不可或缺的一部分。如果你想要创业的话,那么代理微信小程序是一个不错的选择。本文将为大家介绍怎么代理微信小程序创业。 一、什么是微信小程序 微信小程序是一款专为移动设备使用者而设计的应用。它通过扫…...
今天是情人节呐,我利用Python制作了好多表白的东西,快来吧~
今天是情人节那,有没有现在没有对象的宝子,评论里扣个111哈哈 目录 玫瑰 爱心树 丘比特 多彩气球 阿玥的小课堂 一、情人节的由来 二、情人节的来历和意义 玫瑰 局部代码实现如下: # 花瓣1 turtle.left(150) turtle.circle(-90, 70) …...
【Linux】-- 进程信号(处理、内核)
上篇:【Linux】-- 进程信号(认识、应用)_川入的博客-CSDN博客 目录 信号其他相关常见概念 pending handler block 信号处理的过程 sigset_t sigset_t使用 系统接口 sigpending sigprocmask 捕捉方法 sigaction struct sigactio …...
C/【静态通讯录】
🌱博客主页:大寄一场. 🌱系列专栏:C语言学习笔记 😘博客制作不易欢迎各位👍点赞⭐收藏➕关注 前言 往期回顾: C/扫雷 C/N子棋 通讯录作为通讯录地址的书本,当今的通讯录可以涵盖多项…...
万卷书 - 让孩子对自己负责 [The Self-Driven Child]
让孩子对自己负责 The Self-Driven Child - 让你的孩子更加科学合理的掌控自己的生活 简介 《The Self-Driven Child》(2018)解释了我们对孩子的习惯性控制欲,它导致了孩子压力过大、难以合作,以及主观能动性差。本书不提倡这种做法,而是认为我们应该帮助孩子自己做出合适…...
Postman中cookie的操作
在接口测试中,某些接口的调用,需要带入已有Cookie,比如有些接口需要登陆后才能访问。 Postman接口请求使用Cookie有如下两种方式: 1、直接在头域中添加Cookie头域,适用于已经知道请求所用Cookie数据的情况。 2、使用…...
torch.grid_sample
参考: 双线性插值的理论Pytorch grid_sample解析PyTorch中grid_sample的使用方法pytorch中的grid_sample()使用 查阅官方文档,TORCH.NN.FUNCTIONAL.GRID_SAMPLE grid_sample的函数签名如下所示,torch.nn.functional.grid_sample(input, gr…...
前端基于 Docker 的 SSR 持续开发集成环境实践
项目收益 整体开发效率提升20%。加快首屏渲染速度,减少白屏时间,弱网环境下页面打开速度提升40%。 权衡 在选择使用SSR之前,需要考虑以下事项! SSR需要可以运行Node.js的服务器,学习成本相对较高。对于服务器而言&a…...
ARM交叉编译入门及交叉编译第三方库常见问题解析
1. 交叉编译是什么? 交叉编译简单说来,就是编译成果物的地儿不是你运行这个成果物的地儿。最常见的场景,就是我们要编译一个 ARM版本 的可执行程序,但我们编译这个 ARM版本 可执行程序的地方,是在一个 x86_x64 的平台…...
Ruby Web Service 应用 - SOAP4R
什么是 SOAP? 简单对象访问协议(SOAP,全写为Simple Object Access Protocol)是交换数据的一种协议规范。 SOAP 是一种简单的基于 XML 的协议,它使应用程序通过 HTTP 来交换信息。 简单对象访问协议是交换数据的一种协议规范,是一种轻量的、…...
HashMap底层实现原理概述
原文https://blog.csdn.net/fedorafrog/article/details/115478407 hashMap结构 常见问题 在理解了HashMap的整体架构的基础上,我们可以试着回答一下下面的几个问题,如果对其中的某几个问题还有疑惑,那就说明我们还需要深入代码,…...
Linux驱动学习环境搭建
背景常识 一、程序分类 程序按其运行环境分为: 1. 裸机程序:直接运行在对应硬件上的程序 2. 应用程序:只能运行在对应操作系统上的程序 二、计算机系统的层次结构 所有智能设备其实都是计算机,机顶盒、路由器、冰箱、洗衣机、汽…...
Java基础之异常
目录1 异常1.1 异常的概述1.2 常见异常类型1.3 JVM的默认处理方案1.4 编译时异常的处理方式1.4.1 异常处理之 try ... catch ... [ktʃ](捕获异常)1.4.2 异常处理之 throws(抛出异常)1.5 Throwable 的成员方法1.6 编译时异常和运行…...
感慨:大三了,未来该何去何从呢
笔者曾在十一月份通过了字节跳动的三次面试, 但是最终因为疫情原因不能满足公司的入职时间要求, 没有拿到offer。近期也是投递了大量大厂的实习岗, 但是要么已读不回, 要么明确告诉我学历至少要985硕士(天天被阿里cpu)。 说实话一…...
分账系统逻辑
一、说明 主体与业务关系方进行相关利益和支出的分配过程 使用场景: 在分销业务中,主营商户收到用户购买分销商品所支付的款项后,可以通过分账逻辑,与分销商进行佣金结算。在零售、餐饮等行业中,当销售人员完零售等…...
SpringCloud篇——什么是SpringCloud、有什么优缺点、学习顺序是什么
文章目录一、首先看官方解释二、Spring Cloud 的项目的位置三、Spring Cloud的子项目四、Spring Cloud 现状五、spring cloud 优缺点六、Spring Cloud 和 Dubbo 对比七、Spring Cloud 学习路线一、首先看官方解释 Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
MySQL:分区的基本使用
目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...
