当前位置: 首页 > news >正文

机器学习基础知识之数据归一化

文章目录

  • 归一化的原因
    • 1、最大最小归一化
    • 2、Z-score标准化
    • 3、不同方法的应用

归一化的原因

在进行机器学习训练时,通常一个数据集中包含多个不同的特征,例如在土壤重金属数据集中,每一个样本代表一个采样点,其包含的特征有经度、纬度、海拔、不同重金属含量等,这些特征所使用的量纲存在较大的区别,进而导致不同特征下的数值之间的差别也较大。在使用此数据集进行实验时,极有可能忽略了某些数值变化区间较小的特征指标对目标特征数据的影响,进而直接影响到实验的结果。
归一化前的数据:
在这里插入图片描述

为了解决上述问题,在使用该数据集进行相关实验前,通常需要使用归一化方法对数据进行预处理。归一化方法是机器学习中的一项基础工作,可以被通俗的理解为将不同的数据归为同一类。归一化方法有两种形式,一种为通过数学方法将所有的数据映射到0到1范围之内来方便进行处理,另外还有一种方式是将有量纲表达式变为无量纲表达式。由于在进行机器学习时,大部分情况都是将所有的数据映射到0到1范围之内即可,因此将分别针对这一形式中的几种归一化方法进行介绍。
归一化之后的数据:
在这里插入图片描述

1、最大最小归一化

最大最小归一化。这种方法是最简单的一种方法,它主要需要分别针对每一个特征变量,遍历这一个特征变量的所有值,然后保存其中的最大值与最小值,通过计算此特征变量中每个数值与最大值、最小值之间的比值关系来将此数值映射到区间0到1之中,具体的计算公式如下:
在这里插入图片描述

其中x表示原始数据,x_min表示此特征变量下的最小数值,x_max表示此特征变量下的最大数值,x^*表示归一化之后的数据。

由于归一化方法将数值映射到了区间0到1之间,而在训练的过程中需要通过输入特征与参数的计算获得输出值来拟合目标值,因此针对目标特征变量也要进行归一化处理,且此时训练获得参数值为针对归一化后的数据优化得来的。为了在使用训练好的模型进行预测的时候可以获得原量纲下的数据,则需要对计算得出的数据进行反归一化处理,此归一化方法下的反归一化计算方式如下:
在这里插入图片描述

2、Z-score标准化

此方法与最大最小归一化方法最大的不同点在于最大最小归一化方法利用的是同一特征变量下的最大值与最小值,而此方法利用的是同一特征变量下的平均值与标准差,经过此归一化方法进行归一化处理后的数据在数据分布上符合均值为0,标准值为1的标准正态分布。此归一化方法的计算公式如下:
在这里插入图片描述

其中μ表示此特征变量下的数值平均值,σ表示此特征变量下的数值标准差。

同理,在对目标特征变量进行训练时也需要对计算的结果进行反归一化以获得原量纲下的数据,此归一化方法对应的反归一化公式如下:
在这里插入图片描述

3、不同方法的应用

除上述两种归一化方法外,还存在一些归一化方法,如Sigmod函数转换、log函数转换以及反正切函数转换等,这些方法的应用相对较少,但其中心思想都是将数据值大小映射到区间0到1之间。
由于不同归一化方法的实现方式不同,因此它们在解决实际问题时的应用场景也有差别,例如在处理分类、聚类问题时,需要使用距离值来度量不同变量之间的相似性,此时选用Z-score标准化方法对数据进行归一化可以获得更好的效果,而在不涉及距离度量或数据的分布不符合正态分布时,使用最大最小归一化方法则更为合适。在使用协作复合神经网络模型对土壤重金属含量进行预测时由于使用的数据不涉及度量,因此采用的数据归一化方法为最大最小归一化。

相关文章:

机器学习基础知识之数据归一化

文章目录 归一化的原因1、最大最小归一化2、Z-score标准化3、不同方法的应用 归一化的原因 在进行机器学习训练时,通常一个数据集中包含多个不同的特征,例如在土壤重金属数据集中,每一个样本代表一个采样点,其包含的特征有经度、…...

QCC51XX---pydbg_cmd集合

目录 common pydbg_cmd headset pydbg_cmd earbud pydbg_cmd common pydbg_cmd log apps1.log_level() apps1.fw.gbl.debug_log_level__global 查看log等级apps1.fw.gbl.debug_log_level__global.value = 5 设置log等级 apps1.log()...

camx 马达的MSM_ACTUATOR_WRITE_DAC 操作

camx 马达的MSM_ACTUATOR_WRITE_DAC操作 为什么要分析 MSM_ACTUATOR_WRITE_DACmm-camera MSM_ACTUATOR_WRITE_DACcamx MSM_ACTUATOR_WRITE_DAC总结 为什么要分析 MSM_ACTUATOR_WRITE_DAC 目前的camx源码 省略了hw_mask 的处理。 一般来说 hw_mask 是0 ,但是对于非0…...

【无人机】无人机平台的非移动 GPS 干扰器进行位置估计的多种传感器融合算法的性能分析(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥 🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 …...

一篇文章搞定《RecyclerView缓存复用机制》

------《RecyclerView缓存复用机制》 前言零、为什么要缓存一、RecyclerView如何构建我们的列表视图二、缓存过程三、缓存结构1、mChangedScrap/mAttachedScrap2、mCachedViews3、mViewCacheExtension4、mRecyclerPool 四、总结 前言 本篇文章,暂时不加入预加载进行…...

Elasticsearch概述

1.Elasticsearch干啥的? Elasticsearch 是一个开源的分布式搜索和分析引擎,用于实时搜索、分析和存储大规模数据。它可以帮助用户在海量数据中快速进行全文搜索、聚合分析、地理空间分析等操作,并支持水平扩展以应对高并发访问需求。 Elasti…...

停车场收费系统

1.系统的开发工具 1.1 AppServe集成应用 Mysql:MySQL 是一款安全、跨平台、高效的,并与 PHP、Java 等主流编程语言紧密结合的数据库系统。该数据库系统是由瑞典的 MySQL AB 公司开发、发布并支持,由 MySQL 的初始开发人员 David Axmark 和 Mi…...

nodejs+vue+elementui学生毕业生离校系统

学生毕业离校系统的开发过程中。该学生毕业离校系统包括管理员、学生和教师。其主要功能包括管理员:首页、个人中心、学生管理、教师管理、离校信息管理、费用结算管理、论文审核管理、管理员管理、留言板管理、系统管理等,前台首页;首页、离…...

儿童用灯哪个品牌好?推荐专业的儿童护眼台灯

一款好的儿童台灯,主要是从5个方面决定,照度及均匀度,蓝光,色温,显指,频闪 ① 照度及均匀度最高是国AA级,其次就是国A级 ② 蓝光一定要选择RG0无危险级,蓝光能量最强,…...

探究Android插件化开发的新思路——Shadow插件化框架

Shadow插件化框架是什么? Shadow是一种Android App的插件化框架,它利用类似于ClassLoader的机制来实现应用程序中的模块化,并让这些模块可以在运行时灵活地进行加载和卸载。Shadow框架主张将一个大型的Android App拆分成多个小模块&#xff…...

SimpleDateFormat和DateTimeFormatter的区别及使用详解

目录 1.简介2.区别3.SimpleDateFormat3.1 字符串转日期3.2 日期转字符串 4.DateTimeFormatter4.1 字符串转日期4.2 日期转字符串 扩展 1.简介 DateTimeFormatter 和 SimpleDateFormat 都是用于格式化日期和时间的类,但是它们有一些区别。 SimpleDateFormat 是 Jav…...

边缘人工智能——nanodet模型实践指引,从标注数据集到实现部署文件

内容概述 首先获得一个合适的nanodet模型版本,配置nanodet适用的环境,然后对网上公开的生数据集进行重新标注,配置nanodet并进行训练,.pth到.onnx的模型转化及简化,编写推理文件。 文章着重于实践方向指引,…...

SASS的用法指南

一、什么是SASS SASS是一种CSS的开发工具,提供了许多便利的写法,大大节省了设计者的时间,使得CSS的开发,变得简单和可维护。 本文总结了SASS的主要用法。我的目标是,有了这篇文章,日常的一般使用就不需要去…...

MCSM面板一键搭建我的世界服务器-外网远程联机【内网穿透】

文章目录 前言1.Mcsmanager安装2.创建Minecraft服务器3.本地测试联机4. 内网穿透4.1 安装cpolar内网穿透4.2 创建隧道映射内网端口 5.远程联机测试6. 配置固定远程联机端口地址6.1 保留一个固定TCP地址6.2 配置固定TCP地址 7. 使用固定公网地址远程联机 转载自远程穿透文章&…...

( 数组和矩阵) 565. 数组嵌套 ——【Leetcode每日一题】

❓565. 数组嵌套 难度:中等 索引从 0 开始长度为N的数组 A,包含 0 到 N - 1 的所有整数。找到最大的集合 S并返回其大小,其中 S[i] {A[i], A[A[i]], A[A[A[i]]], ... } 且遵守以下的规则。 假设选择索引为 i 的元素 A[i] 为 S 的第一个元…...

linux内核网络子系统初探---概述

linux内核网络子系统初探—概述 一、网络模型 简单介绍 学习网络时,必定能在各种教材资料里见到以下三种网络模型: 三种模型间的差异: OSI七层模型是理论上的网络模型,从功能方面分成了相对独立的7个层次,由于太复…...

java版工程项目管理系统源代码-功能清单 图文解析

Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个)项目显示…...

【chapter30】【PyTorch】[动量与学习率衰减】

前言: SGD的不足: ①呈“之”字型,迂回前进,损失函数值在一些维度的改变得快(更新速度快),在一些维度改变得慢(速度慢)- 在高维空间更加普遍 ②容易陷入局部极小值和鞍点…...

【键入网址到网页显示】

文章目录 HTTPDNS五层协议TCPIPMAC网卡(物理层)交换机路由器 HTTP 对 URL 进行解析之后,浏览器确定了 Web 服务器和文件名,接下来就是根据这些信息来生成 HTTP 请求消息了。 http://www.server.com/dir1/file1.html http:访问数…...

Nacos配置中心、配置热更新、及配置共享的记录

Nacos除了提供了注册中心的功能,同样也提供了配置中心的功能,用于管理一些叫常改动的配置 当微服务部署的实例越来越多,达到数十、数百时,逐个修改微服务配置就会让人抓狂,而且很容易出错。我们需要一种统一配置管理方案,可以集中…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...

深度学习习题2

1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...