全网最火,Web自动化测试驱动模型详全,一语点通超实用...
目录:导读
- 前言
- 一、Python编程入门到精通
- 二、接口自动化项目实战
- 三、Web自动化项目实战
- 四、App自动化项目实战
- 五、一线大厂简历
- 六、测试开发DevOps体系
- 七、常用自动化测试工具
- 八、JMeter性能测试
- 九、总结(尾部小惊喜)
前言
自动化测试模型:可以理解为自动化测试框架+工具设计的一种思想产物。
Web自动化测试:https://www.bilibili.com/video/BV1MS4y1W79K/
库、框架、工具之间的区别:
库:由代码集成的一个产品,供用户调用。面向对象的库叫做类库,面向过程的库叫做函数库,webdriver就属于库的范畴。
框架:为解决一个或一类问题而开发的产品,一般只需要使用框架提供的类或函数,即可实现全部功能。前面的博客中提到的unittest框架,
主要用于实现测试用例的组织和执行,以及测试结果的生成,因此通常称它为单元测试框架。
工具:相对框架来说更抽象,屏蔽底层代码,一般提供单独的操作界面供用户使用,像QTP、selenium IDE就是自动化测试工具。
1、线性测试
早期的自动化测试,就是通过录制或者编写应用程序的操作步骤产生响应的线性脚本,来模拟用户完整的操作场景。
优点:单个脚本相对完整,且独立,可拿出来单独执行;
缺点:开发成本很高,测试用例之间可能存在重复操作,每次都要录制或编写重复的操作,比如用户登录;
维护成本很高,因为存在重复操作,因此如重复操作发生变更,就需要包含重复操作的用例都需要进行修改;
2、模块驱动化测试
将重复的操作独立封装为公共模块,用例执行过程中需要用到时调用该公共模块,最大限度的消除重复操作;
优点:提高开发效率,不用重复编写相同的脚本;
简化了维护的复杂性,如果某个地方发生变化,只需要修改变更内容即可;
3、数据驱动测试
即根据数据的改变去驱动自动化测试的执行,最终引起测试结果的改变,简单来说,数据驱动就是数据的参数化,因为输入的不同而引起输出的不同。
数据驱动的方式很多,无论读取的是定义的数组、字典,或是外部文件(excel、yaml、csv、txt、xml等),都可以看做数据驱动,目的都是实现数据与脚本分离。
优点:增强脚本的复用性,比如用户登录模块,使用不同的数据进行登录,这样可以很好的适用于相同操作不同数据的情况。
4、关键字驱动测试
关键字驱动和数据驱动很相似,通过关键字的改变引起测试结果的改变,也称之为表格驱动测试或基于动作字的测试。
关键字驱动基本上将测试用例分为4个不同的部分。
分别是:
测试步骤(Test Step)、测试步骤中的对象(Test Object)、测试对象执行的动作(Action)、测试对象需要的数据(Test Data)。
目前典型的关键字驱动工具以QTP(最新版本叫做UTF)和Robot Framework为主,前者为商业工具,后者开源。
这类工具皆封装了底层代码,提供独立的图形界面,只需使用工具所提供的关键字,以“填表格”的方式来编写用例即可。
缺点:个人认为,这种傻瓜式的测试模型对个人的技术和经验提升,没有太大帮助,本人还是比较倾向于写代码去实现自动化测试,毕竟,“代码改变世界!”
不过话说回来,无论是工具还是测试模型,都是辅助我们更好的工作,提升效率;这一点,仁者见仁智者见智,观点不同而已。
5、综合自动化测试
上面的几种自动化测试模型,有各自的适用场景和优缺点,但实际来说,真实的场景往往比我们预估的更复杂,所以,根据实际情况选择合适的测试模型,综合使用不失为一种比较合理的做法。
个人认为,成功的自动化测试模型,通常都融合了“模块驱动”+“数据驱动/关键字驱动”,优点如下:
1)即拥有脚本与测试数据相互分离的优点,又结合了模块驱动的架构,这样会使得测试脚本更加简洁,并减少运行时意外失败的可能性;
2)该架构可以实现一些纯粹的“数据/关键字驱动测试”难以实现的自动化测试任务;
3)大大减少了测试用例的维护复杂性,提升了脚本开发效率,测试脚本的可复用性、移植性较强;
下面列举一下现企业常用做的自动化测试框架:
接口自动化测试方向:Python+requests+pytest+yaml+alluer+Jenkins;
web自动化测试方向:Python+selenium4+pytest+POM+allure+Jenkins;
app自动化测试方向:Python+appium+POM+pytest+allure+Jenkins;
下面是我整理的2023年最全的软件测试工程师学习知识架构体系图 |
一、Python编程入门到精通
二、接口自动化项目实战
三、Web自动化项目实战
四、App自动化项目实战
五、一线大厂简历
六、测试开发DevOps体系
七、常用自动化测试工具
八、JMeter性能测试
九、总结(尾部小惊喜)
每个人都有自己的梦想,但只有付出行动和努力,才能让它们成真。不要被困难吓倒,相信自己的能力,坚持不懈地追求,成功必将属于你!
生活总会有各种不如意,但只要你始终保持着奋斗的心态,勇敢面对,积极进取,就一定能够克服困难,迎接成功的曙光!
只有肯坚持、不怕失败的人,才能最终迎来胜利的曙光。做自己该做的事,让梦想变得更加美好。与其后悔错过每一个机会,不如努力拼搏,创造属于自己的奇迹!
相关文章:

全网最火,Web自动化测试驱动模型详全,一语点通超实用...
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 自动化测试模型&a…...

如何写软件测试简历项目经验,靠这个面试都要赶场
一、前言:浅谈面试 面试是我们进入一个公司的门槛,通过了面试才能进入公司,你的面试结果和你的薪资是息息相关的。那如何才能顺利的通过面试,得到公司的认可呢?面试软件测试要注意哪些问题呢?下面和笔者一起来看看吧。这里分享一…...

【Linux】Linux下安装Mysql(图文解说详细版)
文章目录 前言第一步,进到opt文件夹下面,为什么?因为opt文件夹相当于Windows下的D://software第二步,用yum安装第三步,设置mysql的相关配置第四步,设置远程连接。第五步,更改mysql的语言第六步&…...

Cookie和Session的API、登录页面
目录 一、Cookie 和 Session 1、HttpServletRequest 类中的相关方法 2、HttpServletResponse 类中的相关方法 3、HttpSession 类中的相关方法 4、Cookie 类中的相关方法 二、网页登录 1、约定前后端交互接口 2、编写一个简单的登录页面 3、编写一个Servlet 来处理这个…...

C++数据结构:手撕红黑树
目录 一. 红黑树的概念及结构 二. 红黑树节点的定义 三. 红黑树节点的插入 3.1 初步查找插入节点的位置并插入节点 3.2 红黑树结构的调整 3.3 红黑树节点插入完整版代码 四. 红黑树的结构检查 4.1 检查是否为搜索树 4.2 检查节点颜色是否满足要求 附录:红黑…...

Spring IoC 深度学习
Io回顾 IoC 是 Inversion of Control 的简写,译为“控制反转”,它不是一门技术,而是一种设计思想,是一个重要的面向对象编程法则,能够指导我们如何设计出松耦合、更优良的程序。 Spring 通过 IoC 容器来管理所有 Jav…...

C语言从入门到精通第17天(指针和数组联用)
指针和数组联用 不同类型指针变量之间的区别数组的指针指针数组 不同类型指针变量之间的区别 在了解数组和指针联用之前,我们先对指针变量进行补充。我们对比一下int *p1和char *p2的区别? 相同点: 都是指针变量都是用来保存一个内存地址编…...

Android9.0 原生系统SystemUI下拉状态栏和通知栏视图之锁屏通知布局
1.前言 在9.0的系统rom定制化开发中,对于系统原生systemui的锁屏界面的功能也是非常重要的,所以在锁屏页面布局中,也是有通知栏布局的,所以接下来对于息屏亮屏 通知栏布局的相关流程分析,看下亮屏后锁屏页面做了哪些功能 2.原生系统SystemUI下拉状态栏和通知栏视图之锁…...

音视频八股文(10)-- mp4结构
介绍 mp4⽂件格式⼜被称为MPEG-4 Part 14,出⾃MPEG-4标准第14部分 。它是⼀种多媒体格式容器,⼴泛⽤于包装视频和⾳频数据流、海报、字幕和元数据等。(顺便⼀提,⽬前流⾏的视频编码格式AVC/H264 定义在MPEG-4 Part 10)…...
python算法中的深度学习算法之深度信念网络(详解)
目录 学习目标: 学习内容: 深度信念网络 Ⅰ. 预训练 Ⅱ. 微调 学习目标: 一分钟掌握 python算法中的深度学习算法之深度信念网络 入门知识...

SPSS如何绘制常用统计图之案例实训?
文章目录 0.引言1.绘制简单条形图2.绘制分类条形图3.绘制分段条形图4.绘制简单线图5.绘制多重线图6.绘制垂直线图7.绘制简单面积图8.绘制堆积面积图9.绘制饼图10.绘制直方图11.绘制简单散点图12.绘制重叠散点图13.绘制矩阵散点图14.绘制三维散点图15.绘制简单箱图16.绘制分类箱…...

打动人心的故事 | 如何利用文案在Facebook上塑造品牌形象
在当今的数字营销时代,文案已经成为各大平台上不可或缺的元素之一。在Facebook上,一个好的文案能够为品牌带来巨大的曝光率和用户黏性,甚至可以改变用户对品牌的看法。那么,如何利用文案在Facebook上打动人心,塑造品牌…...

什么是模糊控制?
模糊控制设计原理 1、传统控制系统和模糊控制系统 传统控制系统结构: 控制目的:通过控制器调节控制信号u,使输出信号y达到要求 模糊控制系统结构: 与传统控制系统的差异:用模糊控制器FC(Fuzzy Controller&…...

仿抖音开发需要注意的问题
一、版权问题 仿抖音开发需要注意版权问题,包括内容的版权和软件的版权。在开发的过程中,不要直接抄袭他人的作品,应该注重保护知识产权。 二、安全性问题 仿抖音开发需要重视应用的安全性问题,避免应用在使用过程中发生安全漏…...

如何根据期刊缩写查找期刊?
英文论文写作中,经常会插入参考文献。参考文献中的期刊名称,时常需要使用缩写。或者是手头有期刊缩写后的名称,但是有时候,查了半天也查不到期刊期刊全称,费时费力让人崩溃。今天就给各位学者老师总结一些查询期刊缩写…...

数据发送流程
在发送模式下,UART 的串行数据发送电路主要包括一个发送移位寄存器(TSR),TSR 功能是将数据 逐个移位送出。待发数据必须先写到发送缓冲区中。 TXIFx 是发送中断标志位,可配置为发送缓冲区空或TSR 空。 数据的发送支持7bit 、8bit 或9bit 数据…...
堆及其应用
堆是一种基于树结构的数据结构,通常用于实现优先队列。堆分为最大堆和最小堆两种类型,最大堆的每个节点的值都大于等于其子节点的值,最小堆则相反,每个节点的值都小于等于其子节点的值。 基础算法操作包括: 1. 插入元…...
MySQL数据库备份脚本
PS:此脚本简单易懂,根据实际情况修改个别参数测试后即可使用,如有错误请指出! 1.MySQL数据库备份脚本 #!/bin/bashuser pw ip dateYdate "%Y" date2date "%Y%m%d" date3date "%Y%m%d %H:%M" date…...

【2023 · CANN训练营第一季】应用开发深入讲解——第三章应用调试
学习资源 日志参考文档 应用开发FAQ 日志主要用于记录系统的运行过程及异常信息,帮助快速定位系统运行过程中出现的问题以及开发过程中的程序调试问题。 日志分为如下两大类: 系统类日志:系统运行产生的日志。主要包括: Contro…...
黎曼几何与黎曼流形
目录 0.黎曼几何 1. 欧几里得几何与黎曼几何的区别 2.黎曼流形 3.黎曼距离 4.切空间 5.黎曼均值 6. SPD矩阵如何形成黎曼流型 7.切线空间映射 8.同余变换和同余不变 9.黎曼对齐 科普性笔记,做了解,不深入。 0.黎曼几何 黎曼几何是一种基于欧几…...

铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

从零开始了解数据采集(二十八)——制造业数字孪生
近年来,我国的工业领域正经历一场前所未有的数字化变革,从“双碳目标”到工业互联网平台的推广,国家政策和市场需求共同推动了制造业的升级。在这场变革中,数字孪生技术成为备受关注的关键工具,它不仅让企业“看见”设…...