yolov8 浅记
目录
Pre:
1. YOLOv8 概述
2. 模型结构设计
3. Loss 计算
4.训练数据增强
5. 训练策略
6、部署推理
End
Pre:
yolo系列发布时间:
先贴一下yolo各系列的发布时间(说出来很丢人,我以为 yolox是 最新的):
yoloX 2021.07
yolov6 2022.06 美团
yolov7 2022.07 网上的评价不错,但是更新时间停留在几个月前
YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务。
ultralytics 并没有直接将开源库命名为 YOLOv8,而是直接使用 ultralytics 这个词,原因是 ultralytics 将这个库定位为算法框架,而非某一个特定算法,一个主要特点是可扩展性。其希望这个库不仅仅能够用于 YOLO 系列模型,而是能够支持非 YOLO 模型以及分类分割姿态估计等各类任务。
在gihub搜yolov8搜不到哦,项目地址在这里 :GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite
性能:

1. YOLOv8 概述
YOLOv8 算法,其核心特性和改动可以归结为如下:
- 提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
- 骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是无脑一套参数应用所有模型,大幅提升了模型性能。不过这个 C2f 模块中存在 Split 等操作对特定硬件部署没有之前那么友好了
- Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从 Anchor-Based 换成了 Anchor-Free
- Loss 计算方面采用了 TaskAlignedAssigner 正样本分配策略,并引入了 Distribution Focal Loss
- 训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度
从上面可以看出,YOLOv8 主要参考了最近提出的诸如 YOLOX、YOLOv6、YOLOv7 和 PPYOLOE 等算法的相关设计,本身的创新点不多,偏向工程实践,主推的还是 ultralytics 这个框架本身。
2. 模型结构设计
Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构如下所示:
3. Loss 计算
Loss 计算过程包括 2 个部分: 正负样本分配策略和 Loss 计算。
现代目标检测器大部分都会在正负样本分配策略上面做文章,
YOLOv5 采用的依然是静态分配策略。考虑到动态分配策略的优异性,YOLOv8 算法中则直接引用了 TOOD 的 TaskAlignedAssigner。
TaskAlignedAssigner 的匹配策略简单总结为: 根据分类与回归的分数加权的分数选择正样本。

s 是标注类别对应的预测分值,u 是预测框和 gt 框的 iou,两者相乘就可以衡量对齐程度。
- 对于每一个 GT,对所有的预测框基于 GT 类别对应分类分数,预测框与 GT 的 IoU 的加权得到一个关联分类以及回归的对齐分数 alignment_metrics
- 对于每一个 GT,直接基于 alignment_metrics 对齐分数选取 topK 大的作为正样本
Loss 计算包括 2 个分支: 分类和回归分支,没有了之前的 objectness 分支。
- 分类分支依然采用 BCE Loss
- 回归分支需要和 Distribution Focal Loss 中提出的积分形式表示法绑定,因此使用了 Distribution Focal Loss, 同时还使用了 CIoU Loss
- 3 个 Loss 采用一定权重比例加权即可。
4.训练数据增强
数据增强方面和 YOLOv5 差距不大,只不过引入了 YOLOX 中提出的最后 10 个 epoch 关闭 Mosaic 的操作。假设训练 epoch 是 500,
5. 训练策略
YOLOv8 的训练策略和 YOLOv5 没有啥区别,最大区别就是模型的训练总 epoch 数从 300 提升到了 500,这也导致训练时间急剧增加。以 YOLOv8-S 为例,其训练策略汇总如下:

6、部署推理
与yolov5不同哦,opencv dnn 部署需要opencv4.7。onnx runtime C++ 部署 可以看看我的博客
End
yolo系列 选哪个,可以看看这里,感觉有点道理:YOLOv8来啦!YOLO内卷期模型怎么选?9+款AI硬件如何快速部署?深度解析
说明:
本文很多部分摘自下列参考,仅作笔记,无意冒犯
参考:
YOLOv8 深度详解!一文看懂,快速上手 - 知乎
YOLOv8来啦 | 详细解读YOLOv8的改进模块!YOLOv5官方出品YOLOv8!_AI追随者的博客-CSDN博客
相关文章:
yolov8 浅记
目录 Pre: 1. YOLOv8 概述 2. 模型结构设计 3. Loss 计算 4.训练数据增强 5. 训练策略 6、部署推理 End Pre: yolo系列发布时间: 先贴一下yolo各系列的发布时间(说出来很丢人,我以为 yolox是 最新的): yoloX 2…...
前端009_类别模块_修改功能
第九章 1、需求分析2、Mock添加查询数据3、Mock修改数据4、Api调用回显数据5、提交修改后的数据6、效果1、需求分析 需求分析 当点击 编辑 按钮后,弹出编辑窗口,并查询出分类相关信息进行渲染。修改后点击 确定 提交修改后的数据。 2、Mock添加查询数据 请求URL: /article/…...
2022级吉林大学面向对象第一次上机测试
【注:解答全部为本人所写,仅供同学们学习时参考使用,请勿照搬抄袭!】 1、 1)略 2)如果main,f1,g1,g2或更多的函数之间有更为复杂的调用关系,头文件一般按怎样的规律写呢? 一般情况下…...
计算机体系结构总结:内存一致性模型 Memory consistency Model
存储一致性是为了保证多线程背景下的访存顺序,多线程的语句是可以交错执行,使得顺序不同产生不同的执行结果。 下面P2的输出结果可能是什么? P1, P2两个线程的语句是可以交叉执行的,比如1a, 2a, 2b, 1b;一个线程内的语…...
高速列车运行控制系统(CTCS)介绍
1、CTCS功能 安全防护 在任何情况下防止列车无行车许可运行防止列车超速运行防止列车超过进路允许速度防止列车超过线路结构规定的速度防止列车超过机车车辆构造速度防止列车超过临时限速及紧急限速防止列车超过铁路有关运行设备的限速防止列车溜逸 人机界面 以字符、数字及…...
C#“System.Threading.ThreadStateException”类型的未经处理的异常
备忘 最近做一个功能,从主界面进入另一个界面时,数据量较大,处理信息较多,程序宕机。而且点击程序还会提示程序无响应。不得已用另一个线程显示界面。但在界面中使用控件时,报错:“System.Threading.Thread…...
为什么要交叉编译?
一、什么是交叉编译、为什么要交叉编译 1、什么是交叉编译? 交叉编译:是在一个平台上生成另一个平台上的可执行代码。比如我们在 x86 平台上,编写程序并编译成能运行在 ARM 平台的程序,编译得到的程序在 x86 平台上是不能运行的…...
java版本电子招标采购系统源码—企业战略布局下的采购
智慧寻源 多策略、多场景寻源,多种看板让寻源过程全程可监控,根据不同采购场景,采取不同寻源策略, 实现采购寻源线上化管控;同时支持公域和私域寻源。 询价比价 全程线上询比价,信息公开透明࿰…...
【MATLAB数据处理实用案例详解(17)】——利用概念神经网络实现柴油机故障诊断
目录 一、问题描述二、利用概念神经网络实现柴油机故障诊断原理三、算法步骤3.1 定义样本3.2 样本归一化3.3 创建网络模型3.4 测试3.5 显示结果 四、运行结果五、完整代码 一、问题描述 柴油机的结构较为复杂,工作状况非常恶劣,因此发生故障的可能性较大…...
神奇字符串、密钥格式化----2023/5/6
神奇字符串----2023/5/6 神奇字符串 s 仅由 ‘1’ 和 ‘2’ 组成,并需要遵守下面的规则: 神奇字符串 s 的神奇之处在于,串联字符串中 ‘1’ 和 ‘2’ 的连续出现次数可以生成该字符串。 s 的前几个元素是 s “1221121221221121122……” 。…...
STM32F4_十进制和BCD码的转换
目录 前言 1. BCD码 2. BCD码和十进制转换的算法 前言 最近在学习STM32单片机(不仅仅是32)的RTC实时时钟系统的过程中,需要配置时钟的时间、日期;这些都需要实现BCD码和十进制之间进行转换。这里和大家一起学习BCD码和十进制之…...
random — 伪随机数生成器(史上总结最全)
目的:实现几种类型的伪随机数生成器。 random 模块基于 Mersenne Twister 算法提供了一个快速的伪随机数生成器。Mersenne Twister 最初开发用于为蒙特卡洛模拟器生成输入,可生成具有分布均匀,大周期的数字,使其可以广泛用于各种…...
基于VBA实现成绩排序的最佳方法-解放老师的双手
作为一名老师,每到期末就要面对一件让人头疼的事情——成绩表统计。 首先,要收集每个学生的考试成绩。这需要花费大量的时间和精力,因为每个学生都有多门科目的成绩需要统计。 其次,要将每个学生的成绩录入到电子表格中。这看起来…...
OCAF如何实现引用关系和拓扑关系
在 OpenCASCADE 中,TDF_Label 是用来保存对象及其属性的基本单元。TDF_Label 可以通过添加不同类型的属性来保存不同的数据类型。属性是继承自 TDF_Attribute 类的对象,每个属性都有一个唯一的标识符(GUID)来识别其类型。TDF_Label是OpenCASCADE中用来管理数据的标签类,它…...
自动创建设备节点
在成功加载驱动模块之后,还需要使用 mknod命令创建设备节点,才能在/dev目录下创建对应的设备文件。自动创建设备节点的功能需要依赖 mdev 设备管理机制,在使用 buildroot 构建 rootfs 的时候,会默认构建 mdev 的功能,m…...
JavaWeb ( 六 ) JSP
2.4.JSP JSP (Java Server Pages) : 一种在服务器端生成动态页面的技术,本质上就是Servlet。将HTML代码嵌入到Java代码中, 通过Java逻辑控制HTML代码的结构从而生成页面。在MVC中通常担任视图层(view),负责信息的展示与收集。 2…...
2023世界超高清视频产业发展大会博冠8K明星展品介绍
2023世界超高清视频产业发展大会博冠8K明星展品介绍: 一、博冠8K全画幅摄像机B1 这是一款面向广电应用的机型,可适配外场ENG制作轻量化需求,应用于8K单边机位、新闻、专题的拍摄工作,也可应用于体育转播、文艺节目等特殊机位及各…...
Map接口以及Collections工具类
文章目录 1.Map接口概述1.1 Map的实现类的结构1.2 Map中存储的key-value结构的理解1.3 HashMap的底层实现原理(以JDK7为例)1.4 Map接口的常用方法1.5 TreeMap1.6 Map实现类之五: Properties 1.Collections工具类1.1方法1.1.1 排序操作(均为static方法)1.1.2 查找、替换 1.Map接…...
SOA协议DDS和Some/IP对比
SOME/IP 和 DDS 均已被纳入AUTOSAR AP的平台标准中。 SOME/IP 和 DDS是在不同的应用场景和不同的需求下诞生的技术,所以它们之间注定有很大的区别。 SOME/IP SOME/IP的全称为:Scalable service-Oriented MiddlewarE over IP,是一种面向服务…...
Sass使用
前言: 这份记录,主要是记录学习sass的学习记录,用于记录一些本人认为可能以后会用到的比较常用的一些知识点,更详细的请看sass官网 功能1-嵌套规则 Sass 允许将一套 CSS 样式嵌套进另一套样式中,内层的样式将它外层的…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...
边缘计算网关提升水产养殖尾水处理的远程运维效率
一、项目背景 随着水产养殖行业的快速发展,养殖尾水的处理成为了一个亟待解决的环保问题。传统的尾水处理方式不仅效率低下,而且难以实现精准监控和管理。为了提升尾水处理的效果和效率,同时降低人力成本,某大型水产养殖企业决定…...

