当前位置: 首页 > news >正文

Protobuf: 高效数据传输的秘密武器

当涉及到网络通信和数据存储时,数据序列化一直都是一个重要的话题;特别是现在很多公司都在推行微服务,数据序列化更是重中之重,通常会选择使用 JSON 作为数据交换格式,且 JSON 已经成为业界的主流。但是 Google 这么大的公司使用的却是一种被称为 Protobuf 的数据交换格式,它是有什么优势吗?这篇文章介绍 Protobuf 的相关知识。

GitHub:https://github.com/protocolbuffers/protobuf

官方文档:https://protobuf.dev/overview/

Protobuf 介绍

Protobuf(Protocol Buffers)是由 Google 开发的一种轻量级、高效的数据交换格式,它被用于结构化数据的序列化、反序列化和传输。相比于 XML 和 JSON 等文本格式,Protobuf 具有更小的数据体积、更快的解析速度和更强的可扩展性。

Protobuf 的核心思想是使用协议(Protocol)来定义数据的结构和编码方式。使用 Protobuf,可以先定义数据的结构和各字段的类型、字段等信息,然后使用Protobuf提供的编译器生成对应的代码用于序列化和反序列化数据。由于 Protobuf 是基于二进制编码的,因此可以在数据传输和存储中实现更高效的数据交换,同时也可以跨语言使用。

相比于 XML 和 JSON,Protobuf 有以下几个优势

  • 更小的数据量:Protobuf 的二进制编码通常比 XML 和 JSON 小 3-10 倍,因此在网络传输和存储数据时可以节省带宽和存储空间。

  • 更快的序列化和反序列化速度:由于 Protobuf 使用二进制格式,所以序列化和反序列化速度比 XML 和 JSON 快得多。

  • 跨语言:Protobuf 支持多种编程语言,可以使用不同的编程语言来编写客户端和服务端。这种跨语言的特性使得 Protobuf 受到很多开发者的欢迎(JSON 也是如此)。

  • 易于维护可扩展:Protobuf 使用 .proto 文件定义数据模型和数据格式,这种文件比 XML 和 JSON 更容易阅读和维护,且可以在不破坏原有协议的基础上,轻松添加或删除字段,实现版本升级和兼容性。

编写 Protobuf

使用 Protobuf 的语言定义文件(.proto)可以定义要传输的信息的数据结构,可以包括各个字段的名称、类型等信息。同时也可以相互嵌套组合,构造出更加复杂的消息结构。

比如想要构造一个地址簿 AddressBook 信息结构。一个 AddressBook 可以包含多个人员 Person 信息,每个 Person 信息可以包含 id、name、email 信息,同时一个 Person 也可以包含多个电话号码信息 PhoneNumber,每个电话号码信息需要指定号码种类,如手机、家庭电话、工作电话等。

如果使用 Protobuf 编写定义文件如下:

// 文件:addressbook.proto
syntax = "proto3";
// 指定 protobuf 包名,防止有相同类名的 message 定义
package com.wdbyte.protobuf;
// 是否生成多个文件
option java_multiple_files = true;
// 生成的文件存放在哪个包下
option java_package = "com.wdbyte.tool.protos";
// 生成的类名,如果没有指定,会根据文件名自动转驼峰来命名
option java_outer_classname = "AddressBookProtos";message Person {// =1,=2 作为序列化后的二进制编码中的字段的唯一标签,也因此,1-15 比 16 会少一个字节,所以尽量使用 1-15 来指定常用字段。optional int32 id = 1;optional string name = 2;optional string email = 3;enum PhoneType {MOBILE = 0;HOME = 1;WORK = 2;}message PhoneNumber {optional string number = 1;optional PhoneType type = 2;}repeated PhoneNumber phones = 4;
}message AddressBook {repeated Person people = 1;
}

Protobuf 文件中的语法解释。

头部全局定义

  • syntax = "proto3";指定 Protobuf 版本为版本3(最新版本)
  • package com.wdbyte.protobuf;指定 Protobuf 包名,防止有相同类名的 message 定义,这个包名是生成的类中所用到的一些信息的前缀,并非类所在包。
  • option java_multiple_files = true; 是否生成多个文件。若 false,则只会生成一个类,其他类以内部类形式提供。
  • option java_package = 生成的类所在包。
  • option java_outer_classname 生成的类名,若无,自动使用文件名进行驼峰转换来为类命名。

消息结构具体定义

message Person 定一个了一个 Person 类。

Person 类中的字段被 optional 修饰,被 optional 修饰说明字段可以不赋值。

  • 修饰符 optional 表示可选字段,可以不赋值。
  • 修饰符 repeated 表示数据重复多个,如数组,如 List。
  • 修饰符 required 表示必要字段,必须给值,否则会报错 RuntimeException,但是在 Protobuf 版本 3 中被移除。即使在版本 2 中也应该慎用,因为一旦定义,很难更改。

字段类型定义

修饰符后面紧跟的是字段类型,如 int32string。常用的类型如下:

  • int32、int64、uint32、uint64:整数类型,包括有符号和无符号类型。

  • float、double:浮点数类型。

  • bool:布尔类型,只有两个值,true 和 false。

  • string:字符串类型。

  • bytes:二进制数据类型。

  • enum:枚举类型,枚举值可以是整数或字符串。

  • message:消息类型,可以嵌套其他消息类型,类似于结构体。

字段后面的 =1,=2 是作为序列化后的二进制编码中的字段的对应标签,因为 Protobuf 消息在序列化后是不包含字段信息的,只有对应的字段序号,所以节省了空间。也因此,1-15 比 16 会少一个字节,所以尽量使用 1-15 来指定常用字段。且一旦定义,不要随意更改,否则可能会对不上序列化信息

编译 Protobuf

使用 Protobuf 提供的编译器,可以将 .proto 文件编译成各种语言的代码文件(如 Java、C++、Python 等)。

下载编译器:https://github.com/protocolbuffers/protobuf/releases/latest

安装完成后可以使用 protoc 命令编译 proto 文件,如编译示例中的 addressbook.proto.

protoc --java_out=./java ./resources/addressbook.proto
# --java_out 指定输出 java 格式文件,输出到 ./java 目录
# ./resources/addressbook.proto 为 proto 文件位置

生成后可以看到生产的类文件。

./
├── java
│   └── com
│       └── wdbyte
│           └── tool
│               ├── protos
│               │   ├── AddressBook.java
│               │   ├── AddressBookOrBuilder.java
│               │   ├── AddressBookProtos.java
│               │   ├── Person.java
│               │   ├── PersonOrBuilder.java
└── resources├── addressbook.proto

使用 Protobuf

使用 Java 语言操作 Protobuf,首先需要引入 Protobuf 依赖。

Maven 依赖:

<dependency><groupId>com.google.protobuf</groupId><artifactId>protobuf-java</artifactId><version>3.22.3</version>
</dependency>

构造消息对象

// 直接构建
PhoneNumber phoneNumber1 = PhoneNumber.newBuilder().setNumber("18388888888").setType(PhoneType.HOME).build();
Person person1 = Person.newBuilder().setId(1).setName("www.wdbyte.com").setEmail("xxx@wdbyte.com").addPhones(phoneNumber1).build();
AddressBook addressBook1 = AddressBook.newBuilder().addPeople(person1).build();
System.out.println(addressBook1);
System.out.println("------------------");//  链式构建
AddressBook addressBook2 = AddressBook.newBuilder().addPeople(Person.newBuilder().setId(2).setName("www.wdbyte.com").setEmail("yyy@126.com").addPhones(PhoneNumber.newBuilder().setNumber("18388888888").setType(PhoneType.HOME))).build();
System.out.println(addressBook2);

输出:

people {id: 1name: "www.wdbyte.com"email: "xxx@wdbyte.com"phones {number: "18388888888"type: HOME}
}------------------
people {id: 2name: "www.wdbyte.com"email: "yyy@126.com"phones {number: "18388888888"type: HOME}
}

序列化、反序列化

序列化:将内存中的数据对象序列化为二进制数据,可以用于网络传输或存储等场景。

反序列化:将二进制数据反序列化成内存中的数据对象,可以用于数据处理和业务逻辑。

下面演示使用 Protobuf 进行字符数组和文件的序列化及反序列化过程。

package com.wdbyte.tool.protos;import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;/*** * @author www.wdbyte.com*/
public class ProtobufTest2 {public static void main(String[] args) throws IOException {PhoneNumber phoneNumber1 = PhoneNumber.newBuilder().setNumber("18388888888").setType(PhoneType.HOME).build();Person person1 = Person.newBuilder().setId(1).setName("www.wdbyte.com").setEmail("xxx@wdbyte.com").addPhones(phoneNumber1).build();AddressBook addressBook1 = AddressBook.newBuilder().addPeople(person1).build();// 序列化成字节数组byte[] byteArray = addressBook1.toByteArray();// 反序列化 - 字节数组转对象AddressBook addressBook2 = AddressBook.parseFrom(byteArray);System.out.println("字节数组反序列化:");System.out.println(addressBook2);// 序列化到文件addressBook1.writeTo(new FileOutputStream("AddressBook1.txt"));// 读取文件反序列化AddressBook addressBook3 = AddressBook.parseFrom(new FileInputStream("AddressBook1.txt"));System.out.println("文件读取反序列化:");System.out.println(addressBook3);}
}

输出:

字节数组反序列化:
people {id: 1name: "www.wdbyte.com"email: "xxx@wdbyte.com"phones {number: "18388888888"type: HOME}
}文件读取反序列化:
people {id: 1name: "www.wdbyte.com"email: "xxx@wdbyte.com"phones {number: "18388888888"type: HOME}
}

Protobuf 为什么高效

在分析 Protobuf 高效之前,我们先确认一下 Protobuf 是否真的高效,下面将 Protobuf 与 JSON 进行对比,分别对比序列化和反序列化速度以及序列化后的存储占用大小

测试工具:JMH,FastJSON,

测试对象:Protobuf 的 addressbook.proto,JSON 的普通 Java 类。

Maven 依赖:

<dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>2.0.7</version>
</dependency>
<dependency><groupId>org.openjdk.jmh</groupId><artifactId>jmh-core</artifactId><version>1.33</version>
</dependency>
<dependency><groupId>org.openjdk.jmh</groupId><artifactId>jmh-generator-annprocess</artifactId><version>1.33</version><scope>provided</scope>
</dependency>

先编写与addressbook.proto 结构相同的 Java 类 AddressBookJava.java.

public class AddressBookJava {List<PersonJava> personJavaList;public static class PersonJava {private int id;private String name;private String email;private PhoneNumberJava phones;// get...set...}public static class PhoneNumberJava {private String number;private PhoneTypeJava phoneTypeJava;// get....set....}public enum PhoneTypeJava {MOBILE, HOME, WORK;}public List<PersonJava> getPersonJavaList() {return personJavaList;}public void setPersonJavaList(List<PersonJava> personJavaList) {this.personJavaList = personJavaList;}
}

序列化大小对比

分别在地址簿中添加 1000 个人员信息,输出序列化后的数组大小。

package com.wdbyte.tool.protos;import java.io.IOException;
import java.util.ArrayList;import com.alibaba.fastjson.JSON;import com.wdbyte.tool.protos.AddressBook.Builder;
import com.wdbyte.tool.protos.AddressBookJava.PersonJava;
import com.wdbyte.tool.protos.AddressBookJava.PhoneNumberJava;
import com.wdbyte.tool.protos.AddressBookJava.PhoneTypeJava;
import com.wdbyte.tool.protos.Person.PhoneNumber;
import com.wdbyte.tool.protos.Person.PhoneType;/*** @author https://www.wdbyte.com*/
public class ProtobufTest3 {public static void main(String[] args) throws IOException {AddressBookJava addressBookJava = createAddressBookJava(1000);String jsonString = JSON.toJSONString(addressBookJava);System.out.println("json string size:" + jsonString.length());AddressBook addressBook = createAddressBook(1000);byte[] addressBookByteArray = addressBook.toByteArray();System.out.println("protobuf byte array size:" + addressBookByteArray.length);}public static AddressBook createAddressBook(int personCount) {Builder builder = AddressBook.newBuilder();for (int i = 0; i < personCount; i++) {builder.addPeople(Person.newBuilder().setId(i).setName("www.wdbyte.com").setEmail("xxx@126.com").addPhones(PhoneNumber.newBuilder().setNumber("18333333333").setType(PhoneType.HOME)));}return builder.build();}public static AddressBookJava createAddressBookJava(int personCount) {AddressBookJava addressBookJava = new AddressBookJava();addressBookJava.setPersonJavaList(new ArrayList<>());for (int i = 0; i < personCount; i++) {PersonJava personJava = new PersonJava();personJava.setId(i);personJava.setName("www.wdbyte.com");personJava.setEmail("xxx@126.com");PhoneNumberJava numberJava = new PhoneNumberJava();numberJava.setNumber("18333333333");numberJava.setPhoneTypeJava(PhoneTypeJava.HOME);personJava.setPhones(numberJava);addressBookJava.getPersonJavaList().add(personJava);}return addressBookJava;}
}

输出:

json string size:108910
protobuf byte array size:50872

可见测试中 Protobuf 的序列化结果比 JSON 小了将近一倍左右。

序列化速度对比

使用 JMH 进行性能测试,分别测试 JSON 的序列化和反序列以及 Protobuf 的序列化和反序列化性能情况。每次测试前进行 3 次预热,每次 3 秒。接着进行 5 次测试,每次 3 秒,收集测试情况。

package com.wdbyte.tool.protos;import java.util.ArrayList;
import java.util.concurrent.TimeUnit;import com.alibaba.fastjson.JSON;import com.google.protobuf.InvalidProtocolBufferException;
import com.wdbyte.tool.protos.AddressBook.Builder;
import com.wdbyte.tool.protos.AddressBookJava.PersonJava;
import com.wdbyte.tool.protos.AddressBookJava.PhoneNumberJava;
import com.wdbyte.tool.protos.AddressBookJava.PhoneTypeJava;
import com.wdbyte.tool.protos.Person.PhoneNumber;
import com.wdbyte.tool.protos.Person.PhoneType;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;/*** @author https://www.wdbyte.com*/
@State(Scope.Thread)
@Fork(2)
@Warmup(iterations = 3, time = 3)
@Measurement(iterations = 5, time = 3)
@BenchmarkMode(Mode.Throughput) // Throughput:吞吐量,SampleTime:采样时间
@OutputTimeUnit(TimeUnit.MILLISECONDS)
public class ProtobufTest4 {private AddressBookJava addressBookJava;private AddressBook addressBook;@Setuppublic void init() {addressBookJava = createAddressBookJava(1000);addressBook = createAddressBook(1000);}@Benchmarkpublic AddressBookJava testJSON() {// 转 JSONString jsonString = JSON.toJSONString(addressBookJava);// JSON 转对象return JSON.parseObject(jsonString, AddressBookJava.class);}@Benchmarkpublic AddressBook testProtobuf() throws InvalidProtocolBufferException {// 转 JSONbyte[] addressBookByteArray = addressBook.toByteArray();// JSON 转对象return AddressBook.parseFrom(addressBookByteArray);}public static AddressBook createAddressBook(int personCount) {Builder builder = AddressBook.newBuilder();for (int i = 0; i < personCount; i++) {builder.addPeople(Person.newBuilder().setId(i).setName("www.wdbyte.com").setEmail("xxx@126.com").addPhones(PhoneNumber.newBuilder().setNumber("18333333333").setType(PhoneType.HOME)));}return builder.build();}public static AddressBookJava createAddressBookJava(int personCount) {AddressBookJava addressBookJava = new AddressBookJava();addressBookJava.setPersonJavaList(new ArrayList<>());for (int i = 0; i < personCount; i++) {PersonJava personJava = new PersonJava();personJava.setId(i);personJava.setName("www.wdbyte.com");personJava.setEmail("xxx@126.com");PhoneNumberJava numberJava = new PhoneNumberJava();numberJava.setNumber("18333333333");numberJava.setPhoneTypeJava(PhoneTypeJava.HOME);personJava.setPhones(numberJava);addressBookJava.getPersonJavaList().add(personJava);}return addressBookJava;}
}

JMH 吞吐量测试结果(Score 值越大吞吐量越高,性能越好):

Benchmark                    Mode  Cnt  Score   Error   Units
ProtobufTest3.testJSON      thrpt   10  1.877 ± 0.287  ops/ms
ProtobufTest3.testProtobuf  thrpt   10  2.813 ± 0.446  ops/ms

JMH 采样时间测试结果(Score 越小,采样时间越小,性能越好):

Benchmark                                          Mode    Cnt   Score   Error  Units
ProtobufTest3.testJSON                           sample  53028   0.565 ± 0.005  ms/op
ProtobufTest3.testProtobuf                       sample  90413   0.332 ± 0.001  ms/op

从测试结果看,不管是吞吐量测试,还是采样时间测试,Protobuf 都优于 JSON。

为什么高效?

Protobuf 是如何实现这种高效紧凑的数据编码和解码的呢?

首先,Protobuf 使用二进制编码,会提高性能;其次 Protobuf 在将数据转换成二进制时,会对字段和类型重新编码,减少空间占用。它采用 TLV 格式来存储编码后的数据。TLV 也是就是 Tag-Length-Value ,是一种常见的编码方式,因为数据其实都是键值对形式,所以在 TAG 中会存储对应的字段和类型信息,Length 存储内容的长度,Value 存储具体的内容。

还记得上面定义结构体时每个字段都对应一个数字吗?如 =1,=2,=3.

message Person {optional int32 id = 1;optional string name = 2;optional string email = 3;
}

在序列化成二进制时候就是通过这个数字来标记对应的字段的,二进制中只存储这个数字,反序列化时通过这个数字找对应的字段。这也是上面为什么说尽量使用 1-15 范围内的数字,因为一旦超过 15,就需要多一个 bit 位来存储。

那么类型信息呢?比如 int32 怎么标记,因为类型个数有限,所以 Protobuf 规定了每个类型对应的二进制编码,比如 int32 对应二进制 000string 对应二进制 010,这样就可以只用三个比特位存储类型信息。

这里只是举例描述大概思想,具体还有一些变化。

详情可以参考官方文档:https://protobuf.dev/programming-guides/encoding/

其次,Protobuf 还会采用一种变长编码的方式来存储数据。这种编码方式能够保证数据占用的空间最小化,从而减少了数据传输和存储的开销。具体来说,Protobuf 会将整数和浮点数等类型变换成一个或多个字节的形式,其中每个字节都包含了一部分数据信息和一部分标识符信息。这种编码方式可以在数据值比较小的情况下,只使用一个字节来存储数据,以此来提高编码效率。

最后,Protobuf 还可以通过采用压缩算法来减少数据传输的大小。比如 GZIP 算法能够将原始数据压缩成更小的二进制格式,从而在网络传输中能够节省带宽和传输时间。Protobuf 还提供了一些可选的压缩算法,如 zlib 和 snappy,这些算法在不同的场景下能够适应不同的压缩需求。

综上所述,Protobuf 在实现高效编码和解码的过程中,采用了多种优化方式,从而在实际应用中能够有效地提升数据传输和处理的效率。

总结

ProtoBuf 是一种轻量、高效的数据交换格式,它具有以下优点:

  • 语言中立,可以支持多种编程语言;
  • 数据结构清晰,易于维护和扩展;
  • 二进制编码,数据体积小,传输效率高
  • 自动生成代码,开发效率高。

但是,ProtoBuf 也存在以下缺点:

  • 学习成本较高,需要掌握其语法规则和使用方法;
  • 需要先定义数据结构,然后才能对数据进行序列化和反序列化,增加了一定的开发成本;
  • 由于二进制编码,可读性较差,这点不如 JSON 可以直接阅读

总体来说,Protobuf 适合用于数据传输和存储等场景,能够提高数据传输效率和减少数据体积。但对于需要人类可读的数据,或需要实时修改的数据,或者对数据的传输效率和体积没那么在意的场景,选择更加通用的 JSON 未尝不是一个好的选择。

参考:https://protobuf.dev/overview/

一如既往,文章代码都存放在 Github.com/niumoo/javaNotes.

文章持续更新,可以微信搜一搜「 程序猿阿朗 」或访问「程序猿阿朗博客 」第一时间阅读。本文 Github.com/niumoo/JavaNotes 已经收录,有很多系列文章,欢迎Star。

相关文章:

Protobuf: 高效数据传输的秘密武器

当涉及到网络通信和数据存储时&#xff0c;数据序列化一直都是一个重要的话题&#xff1b;特别是现在很多公司都在推行微服务&#xff0c;数据序列化更是重中之重&#xff0c;通常会选择使用 JSON 作为数据交换格式&#xff0c;且 JSON 已经成为业界的主流。但是 Google 这么大…...

第五十四章 Unity 移动平台输入(下)

本章节我们介绍一个模拟器插件。这种插件比较多&#xff0c;比如EasyTouch&#xff0c;Lean Touch&#xff0c;Joystick Pack等等。EasyTouch是一个使用非常广泛的插件&#xff0c;支持点击&#xff0c;拖拽&#xff0c;遥感等很多常用功能。不过遗憾的是&#xff0c;该插件已经…...

KD305Y带吸收比极化指数兆欧表

一、概述 KD305Y绝缘电阻测试仪对众多的电力设备如&#xff1a;电缆、电机、发电机、变压器、互感器、高压开关、避雷器等要求做一系列的绝缘性能试验&#xff0c;首先是要做绝缘电阻测试。近年来随着电力事业的飞速发展,大容量设备的使用不断增加&#xff0c;用普通的兆欧表无…...

磁盘空间不足怎么办?释放磁盘空间的4种方法

虽然现在硬盘的空间越来越大&#xff0c;但是在这个数据爆炸的时代中&#xff0c;总是会觉得存储空间不够用&#xff0c;一不注意磁盘就满了&#xff0c;那么除了清空回收站、卸载某些程序外&#xff0c;还能怎么释放磁盘空间呢&#xff1f; 方案一&#xff1a;禁用休眠 休眠是…...

ChatGPT调教指北,技巧就是效率!

技巧就是效率 很多人都知道ChatGPT很火很强&#xff0c;几乎无所不能&#xff0c;但跨越了重重门槛之才有机会使用的时候却有些迷茫&#xff0c;一时间不知道如何使用它。如果你就是把他当作一个普通的智能助手来看待&#xff0c;那与小爱同学有什么区别&#xff1f;甚至还差劲…...

Android启动流程(五)——init进程对子进程的监控

init进程会读取rc文件&#xff0c;然后孵化很多其他系统服务进程&#xff0c;为防止子进程死亡后称为僵尸进程&#xff0c;init需要监测子进程是否死亡&#xff0c;如果死亡&#xff0c;则清除子进程资源&#xff0c;并重新拉起进程。 system/core/init/init.cpp InstallSigna…...

Python每日一练:蚂蚁家族(详解集合法)

文章目录 前言一、题目二、代码分析总结 前言 这题挺有意思&#xff0c;感觉评简单难度有点低了&#xff0c;如果正经用无向图来做&#xff0c;代码还是有点长的。首先得建立节点&#xff0c;估计除第一个和最后一个每个节点都是一条线连进&#xff0c;一条线连出的。就可以这…...

图神经网络:在KarateClub数据集上动手实现图神经网络

文章说明&#xff1a; 1)参考资料&#xff1a;PYG官方文档。超链。 2)博主水平不高&#xff0c;如有错误还望批评指正。 3)我在百度网盘上传了这篇文章的jupyter notebook。超链。提取码8888。 文章目录 文献阅读&#xff1a;代码实操&#xff1a; 文献阅读&#xff1a; 参考文…...

ArduPilot之开源代码调试技巧

ArduPilot之开源代码调试技巧 1. 源由2. ArduPilot Code Debugging Part13. ArduPilot Code Debugging Part24. 持续更新中。。。5. 参考资料 1. 源由 对于如何调试和验证ArduPilot&#xff0c;对于新手来说&#xff0c;有的时候反而是入门的一个门槛。 其实这个并不难&#…...

Linux网络基础-2

在之前的网络基础博客中&#xff0c;我们对网络的基本概念进行了一个简单的介绍&#xff0c;那么接下来的网络内容中&#xff0c;我们将对网络通信中的典型协议进行详细解释。 我们根据网络协议中的分层来对典型协议进行注意介绍&#xff0c;不过对于物理层的传输我们不做考究…...

软件测试报告模板

目录 2 1 概述... 3 1.1 测试目的... 3 1.2 测试策略... 3 1.3 测试方法... 3 1.4 计划验收标准... 3 1.5 测试用例... 4...

记一次azkaban调度异常处理

一、背景 预发布环境使用的数据库性能比较低&#xff0c;根据业务测试的需求&#xff0c;需要将数据库更换成 稳定高性能的数据库。更换业务数据库后azkaban定时任务失败 二、数据库服务信息 说明&#xff1a;该部分使用代号来代替&#xff0c;非真实信息 该数据库存储了azka…...

开发一个vue自定义指令的npm库-系列三:使用rollup打包npm库并发布

配置 rollup 使用rollup将 TypeScript 代码转换为 JavaScript&#xff0c;然后进行压缩和输出到目标文件。 项目根目录新建rollup.config.js import typescript from "rollup/plugin-typescript"; import terser from "rollup/plugin-terser"; import de…...

C嘎嘎的运算符重载基础教程以及遵守规则【文末赠书三本】

博主名字&#xff1a;阿玥的小东东 大家一起共进步&#xff01; 目录 基础概念 优先级和结合性 不会改变用法 在全局范围内重载运算符 小结 本期送书&#xff1a;盼了一年的Core Java最新版卷Ⅱ&#xff0c;终于上市了 基础概念 运算符重载是通过函数重载实现的&#xf…...

【MCAL_UART】-1.2-图文详解RS232,RS485和MODBUS的关系

目录 1 UART&#xff0c;RS232和RS485通信拓扑 2 什么是RS232 2.1 RS232标准的演变 2.2 RS232标准讲了哪些 2.2.1 RS232通信的电平 2.2.2 RS232通信的带宽 2.2.3 RS232通信距离 2.2.4 RS232通信的机械接口 3 什么是RS485 3.1 RS485标准的演变 3.2 RS485标准讲了哪些…...

设计模式详解(二)——单例模式

单例模式简介 单例模式&#xff08;Singleton Pattern&#xff09;是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式&#xff0c;创建型模式是一类最常用的设计模式&#xff0c;在软件开发中应用非常广泛&#xff0c;它提供了一种创建对象的最佳方式。 单例模…...

为什么hooks不能在循环、条件或嵌套函数中调用

hooks不能在循环、条件或嵌套函数中调用 为什么&#xff1f; 带着疑问一起去看源码吧&#xff5e; function App() {const [num, setNum] useState(0);const [count, setCount] useState(0);const handleClick () > {setNum(num > num 1)setCount(2)}return <p …...

互联网赚钱项目有哪些?目前最火的互联网项目

互联网是一个神奇的行业&#xff0c;大门不出二门不迈&#xff0c;一根网线一台电脑&#xff0c;甚至一台手机就可以赚钱。它给我们创造了前所未有的商业机会&#xff0c;让成千上万有梦想&#xff0c;敢想敢干的人通过互联网获得了巨大的成功&#xff01;正因为如此&#xff0…...

队列、栈专题

队列、栈专题 LeetCode 20. 有效的括号解题思路代码实现 LeetCode 921. 使括号有效的最少添加解题思路代码实现 LeetCode 1541. 平衡括号字符串的最少插入次数解题思路代码实现 总结 不要纠结&#xff0c;干就完事了&#xff0c;熟练度很重要&#xff01;&#xff01;&#xff…...

TensorFlow vs PyTorch:哪一个更适合您的深度学习项目?

在深度学习领域中&#xff0c;TensorFlow 和 PyTorch 都是非常流行的框架。这两个框架都提供了用于开发神经网络模型的工具和库&#xff0c;但它们在设计和实现上有很大的差异。在本文中&#xff0c;我们将比较 TensorFlow 和 PyTorch&#xff0c;并讨论哪个框架更适合您的深度…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;采用DevEco Studio实现&#xff0c;包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...

工厂方法模式和抽象工厂方法模式的battle

1.案例直接上手 在这个案例里面&#xff0c;我们会实现这个普通的工厂方法&#xff0c;并且对比这个普通工厂方法和我们直接创建对象的差别在哪里&#xff0c;为什么需要一个工厂&#xff1a; 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类&#xff1a; 两个发…...