交互式数据分析和处理新方法:pandas-ai =Pandas + ChatGPT
Python Pandas是一个为Python编程提供数据操作和分析功能的开源工具包。这个库已经成为数据科学家和分析师的必备工具。它提供了一种有效的方法来管理结构化数据(Series和DataFrame)。
在人工智能领域,Pandas经常用于机器学习和深度学习过程的预处理步骤。Pandas通过提供数据清理、重塑、合并和聚合,可以将原始数据集转换为结构化的、随时可用的2维表格,并将其输入人工智能算法。
pandas-ai介绍
PandasAI将Pandas转换为一个会话工具,你可以询问有关数据的问题,它则会以Pandas dataframe的形式进行回答。
例如,我们可以要求PandasAI返回一个DataFrame中列值大于5的所有行,它将返回一个只包含这些行的DataFrame。
importpandasaspdfrompandasaiimportPandasAI# Sample DataFramedf=pd.DataFrame({"country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],"gdp": [21400000, 2940000, 2830000, 3870000, 2160000, 1350000, 1780000, 1320000, 516000, 14000000],"happiness_index": [7.3, 7.2, 6.5, 7.0, 6.0, 6.3, 7.3, 7.3, 5.9, 5.0]})# Instantiate a LLMfrompandasai.llm.openaiimportOpenAIllm=OpenAI()pandas_ai=PandasAI(llm)pandas_ai.run(df, prompt='Which are the 5 happiest countries?')
除了返回结果以外,还可以生成图表:
pandas_ai.run(df,"Plot the histogram of countries showing for each the gpd, using different colors for each bar",)
安装和使用
只要使用pip安装就可以使用:
pip install pandasai
但是在使用pandasai时需要输入一个openai的api-key,这样才可以让他调用openai的语言模型:
然后在使用前先import,在输入api的key就可以使用了:
#Import pandas and pandas-ai importpandasaspdfrompandasaiimportPandasAI# Instantiating my llm using OpenAI API key.frompandasai.llm.openaiimportOpenAI# OpenAIllm=OpenAI(api_token="YOUR_OPENAI_API_KEY")
因为pandas的特性,我们不仅仅可以处理csv文件,我们还可以连接关系型的数据库,例如pgsql:
# creating the uri and connecting to databasepg_conn="postgresql://YOUR URI HERE"#Query sql database query="""SELECT *FROM table_name"""#Create dataframe named dfdf=pd.read_sql(query,pg_conn)
然后像上面代码一样,我们可以直接与它进行对话了:
# Using pandas-ai!pandas_ai=PandasAI(llm)pandas_ai.run(df, prompt='Place your prompt here)
最后
ChatGPT、Pandas是强大的工具,当它们结合在一起时,可以彻底改变我们与数据交互和分析的方式。ChatGPT凭借其先进的自然语言处理能力,可以更直观地与数据进行类似人类的交互。而PandasAI可以增强Pandas数据分析体验。通过将复杂的数据操作任务转换为简单的自然语言查询,PandasAI使用户更容易从数据中提取有价值的见解,而无需编写大量代码。
这对于那些还不熟悉Python或pandas操作/转换的人来说是一种编程的新方法。我们不需要为你想要执行的任务编程,而是只是与AI代理交谈,明确的额告诉它想要的结果,代理会将此消息转换为计算机可解释的代码,并返回结果。
https://avoid.overfit.cn/post/05d75584fa34404ca8aefcd9ad1ca1ed
相关文章:

交互式数据分析和处理新方法:pandas-ai =Pandas + ChatGPT
Python Pandas是一个为Python编程提供数据操作和分析功能的开源工具包。这个库已经成为数据科学家和分析师的必备工具。它提供了一种有效的方法来管理结构化数据(Series和DataFrame)。 在人工智能领域,Pandas经常用于机器学习和深度学习过程的预处理步骤。Pandas通…...

FIR滤波
参考来源: https://www.zhihu.com/question/323353814 本节主要围绕以下几个问题进行描述: 什么是FIR滤波器时域的卷积频域的相乘 关于FIR FIR滤波就是在时域上卷积的过程。将含噪声信号与低通滤波器的傅里叶逆变换值进行卷积,这个过程就是…...

Python小姿势 - Python中的类型检查
Python中的类型检查 在Python中,类型检查是通过内置函数isinstance()来实现的。 isinstance() 函数用于判断一个对象是否是一个已知的类型,类似 type()。 isinstance() 与 type() 区别: type() 不会认为子类是一种父类类型。 isinstance() 会…...

人工智能前景
人工智能AI的未来非常广阔和光明。随着科技的不断发展和普及,人工智能已经开始逐渐融入我们生活的方方面面,比如智能家居、智能医疗、无人驾驶等等。未来,随着更多的应用场景被开拓和挖掘,人工智能的应用范围将会越来越广泛&#…...
python并发编程学习笔记--生产者消费者模型 day02
目录 1. 什么是生产者消费者模型 2. 为什么引入生产者消费者模型 3. 如何实现 4. 示例 1. 什么是生产者消费者模型 生产者 : 程序中负责产生数据的一方消费者 : 程序中负责处理数据的一方 2. 为什么引入生产者消费者模型 在并发编程中, 生产者消费者模式通过一个容器来解…...

彩蛋丨利用R语言脚本实现批量合并Excel表格,再也不用手动点来点去了!
利用R语言脚本实现批量合并Excel表格 在整理数据的时候遇到一个问题:假如有很多个excel表,分别存放了一部分数据,现在想要快速把这些表格的数据汇总到一起,如何用R语言快速完成呢?本文分享一个脚本,能够自动…...

深入学习MYSQL-数据操纵及视图
前言 本博客中的例子和文字大部分来源于书籍《mysql必会知识》,后续会根据更多的书籍不断完善此笔记。 插入操作 可以这种方式向数据库插入两条数据,mysql和pg都支持这种写法。在实战中我们应该更多的使用这种写法,因为数据库的批量操作会…...

深入讲解eMMC简介
1 eMMC是什么 eMMC是embedded MultiMediaCard的简称,即嵌入式多媒体卡,是一种闪存卡的标准,它定义了基于嵌入式多媒体卡的存储系统的物理架构和访问接口及协议,具体由电子设备工程联合委员会JEDEC订立和发布。它是对MMC的一个拓展࿰…...

ICV:中国车载超声波雷达市场规模预计2024年可达20亿美元
近年来,由于市场对车辆先进安全功能的需求的增加,汽车超声波传感器市场一直保持稳步增长。ICV估计,车载超声波传感器全球市场预计在2022年至2027年之间以11.5%的复合年增长率增长,这种增长是由越来越多的高级驾驶辅助系…...

PointNet:利用深度学习对点云进行3D分类和语义分割
PointNet:利用深度学习对点云进行3D分类和语义分割 参考自,PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation 代码仓库地址为:https://github.com/charlesq34/pointnet/ 介绍 这次介绍的是一个比较基础的工作…...

第四十二章 Unity 下拉框 (Dropdown) UI
本章节我们介绍下拉框 (Dropdown),我们点击菜单栏“GameObject”->“UI”->“Dropdown”,然后调整它的位置,效果如下 其实它的本质就是一个下拉列表,然后选择列表中的一个选项而已。大家在很多网页中应该可以看到类似的UI元…...

STL常用梳理——STACK、QUEUE
STL——适配器篇 1、ListSTL list 容器介绍list使用 2、适配器介绍3、Deque容器Stack、Queue适配器实现 1、List STL list 容器介绍 STL list 容器,又称双向链表容器,即该容器的底层是以双向链表的形式实现的。这意味着,list 容器中的元素可…...
Unity物理系统基本概念
前言:物理引擎仅仅是对现实物理的一种近似模拟。无论是从运算精度和时间连续性都不够准确。目的只是为了让游戏具备令人信服的物理表现,增强游戏的表现力和用户的沉浸感。 一、刚体Rigidbody 刚体是让物体产生物理行为的主要组件。一旦挂载了Rigidbody组…...

防止表单重复提交的几种方式,演示一个自定义注解方式的实现
防止表单重复提交的几种方式,演示一个自定义注解方式的实现 一、防止表单重复提交的几种方式方式一:Token 机制方式二:去重表(主要是利用 MySQL 的唯一索引机制来实现的)方式三:Redis 的 setnx方式四&#…...

《基于智能手机采集的PPG信号预测血管老化》阅读笔记
目录 一、论文摘要 二、论文十问 Q1: Q1论文试图解决什么问题? Q2: 这是否是一个新的问题? Q3: 这篇文章要验证一个什么科学假设? Q4: 有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?…...

【大数据-调度工具】dolphinscheduler安装和遇到的问题
1.安装 安装步骤按照官网安装即可 官网:DolphinScheduler | 文档中心 (apache.org) 版本:3.1.5 2.踩坑记录 Q1.大文件无法上传 问题描述: 在资源中心中上传文件选择完大文件夹之后,选择确认之后确认按钮转了几圈圈之后就没…...
滑动轨迹生成的思路和代码分享-测试可过极验 90%机率
如有技术侵权、可联系本人下架 由于极验采用人工智能的方式对滑动的轨迹进行的验证,因此如果我们比较随意的生成鼠标滑动轨迹基本是肯定被封的,因此我们要详细分析一下鼠标轨迹的规律, 通之前介绍的调试手段,手工滑动滑块,获取到鼠标滑动轨迹的集合数组如下: [[-37,-41…...

【Linux】项目自动化构建工具make/makefile
🏖️作者:malloc不出对象 ⛺专栏:Linux的学习之路 👦个人简介:一名双非本科院校大二在读的科班编程菜鸟,努力编程只为赶上各位大佬的步伐🙈🙈 目录 前言一、make/makefile的背景二、…...
【系分范文】论软件需求获取技术以及应用
目录 论题论题介绍论文要点理论素材准备范文摘要正文论题 论软件需求获取技术以及应用 论题介绍 软件需求是指用户对新系统在功能、行为、性能、设计约束等方面的期望。软件需求获取是一个确定和理解不同的项目干系人的需求和约束的过程。需求获取是否科学、准备充分,对获取…...
vue2.0中post请求
vue2.0中post请求 三种格式:在vue中axois的用法:1、 multipart/form-data类型2、 x-www-form-urlencoded类型3、 application/json类型 三种格式: ○ Content-Type:x-www-form-urlencoded ○ Content-Type:multipart/form-data ○ Content…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...