区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测
区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测
目录
- 区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测
- 效果一览
- 基本介绍
- 模型描述
- 程序设计
- 参考资料
效果一览
-
进阶版



-
基础版

基本介绍
MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测
QRBiLSTM是一种双向长短期记忆(QR-LSTM)神经网络的变体,用于分位数回归时间序列区间预测。该模型可以预测时间序列的不同分位数的值,并且可以提供置信区间和风险评估等信息。
QR-LSTM是一种基于LSTM模型的分位数回归方法,可以通过学习分位数回归损失函数来预测不同分位数的值。而QRBiLSTM则是在QR-LSTM的基础上加入了双向传输的结构,可以捕捉更多的时间序列信息。
模型描述
QRBiLSTM模型的输入包括历史时间序列数据和外部变量,输出为时间序列的分位数值和置信区间。通常情况下,可以使用训练数据来拟合模型参数,并使用测试数据来评估模型的预测性能。在评估模型性能时,可以使用常见的指标如均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等。
总之,QRBiLSTM是一种非常有用的时间序列预测模型,可以应用于许多领域,如金融、股票、气象学等,可以提供更全面的时间序列预测信息,有助于提高决策的准确性。
-
下面给出QRBiLSTM模型的具体公式,其中 X \textbf{X} X表示输入序列, Y \textbf{Y} Y表示输出序列, H \textbf{H} H表示隐藏状态, C \textbf{C} C表示记忆状态, f θ f_{\theta} fθ表示神经网络模型, q q q表示分位数:
-
正向传播:
H t f , C t f = L S T M θ ( X t , H t − 1 f , C t − 1 f ) \textbf{H}^{f}_{t},\textbf{C}^{f}_{t} = LSTM_{\theta}(\textbf{X}_{t},\textbf{H}^{f}_{t-1},\textbf{C}^{f}_{t-1}) Htf,Ctf=LSTMθ(Xt,Ht−1f,Ct−1f)
H t b , C t b = L S T M θ ( X t , H t + 1 b , C t + 1 b ) \textbf{H}^{b}_{t},\textbf{C}^{b}_{t} = LSTM_{\theta}(\textbf{X}_{t},\textbf{H}^{b}_{t+1},\textbf{C}^{b}_{t+1}) Htb,Ctb=LSTMθ(Xt,Ht+1b,Ct+1b)
Y ^ t q = f θ ( [ H t f , H t b ] ) \hat{Y}^{q}_{t} = f_{\theta}([\textbf{H}^{f}_{t},\textbf{H}^{b}_{t}]) Y^tq=fθ([Htf,Htb])
ϵ ^ t q = Y t q − Y ^ t q \hat{\epsilon}^{q}_{t} = Y^{q}_{t} - \hat{Y}^{q}_{t} ϵ^tq=Ytq−Y^tq
σ ^ t q = median { ∣ ϵ ^ t − τ q ∣ : τ ≤ lag } ⋅ c α ( lag , n ) \hat{\sigma}^{q}_{t} = \text{median}\{|\hat{\epsilon}^{q}_{t-\tau}|:\tau \leq \text{lag}\} \cdot c_{\alpha}(\text{lag},n) σ^tq=median{∣ϵ^t−τq∣:τ≤lag}⋅cα(lag,n)
-
其中, H t f \textbf{H}^{f}_{t} Htf和 C t f \textbf{C}^{f}_{t} Ctf分别表示正向传播的隐藏状态和记忆状态; H t b \textbf{H}^{b}_{t} Htb和 C t b \textbf{C}^{b}_{t} Ctb分别表示反向传播的隐藏状态和记忆状态; Y ^ t q \hat{Y}^{q}_{t} Y^tq表示时间 t t t处分位数为 q q q的预测值; f θ f_{\theta} fθ表示神经网络模型; ϵ ^ t q \hat{\epsilon}^{q}_{t} ϵ^tq表示时间 t t t处分位数为 q q q的预测误差; σ ^ t q \hat{\sigma}^{q}_{t} σ^tq表示时间 t t t处分位数为 q q q的预测误差的置信区间,其中 c α ( lag , n ) c_{\alpha}(\text{lag},n) cα(lag,n)表示置信系数。
-
QRBiLSTM模型的训练目标是最小化分位数损失函数:
Loss θ = ∑ t = 1 T ∑ q ∈ Q ρ q ( ∣ ϵ t q ∣ ) − 1 ∣ Q ∣ ∑ q ∈ Q log ( σ ^ t q ) \text{Loss}_{\theta}=\sum_{t=1}^{T}\sum_{q\in Q}\rho_{q}(|\epsilon^{q}_{t}|)-\frac{1}{|Q|}\sum_{q\in Q}\text{log}(\hat{\sigma}^{q}_{t}) Lossθ=t=1∑Tq∈Q∑ρq(∣ϵtq∣)−∣Q∣1q∈Q∑log(σ^tq)
- 其中, ρ q ( x ) \rho_{q}(x) ρq(x)表示分位数损失函数:
ρ q ( x ) = { q x x ≥ 0 ( q − 1 ) x x < 0 \rho_{q}(x)=\begin{cases}qx&x\geq 0\\(q-1)x&x<0\end{cases} ρq(x)={qx(q−1)xx≥0x<0
- QRBiLSTM模型的预测目标是预测分位数值和置信区间,即 Y ^ t q \hat{Y}^{q}_{t} Y^tq和 σ ^ t q \hat{\sigma}^{q}_{t} σ^tq。
程序设计
- 基础版完整程序和数据获取方式,订阅《LSTM长短期记忆神经网络》(数据订阅后私信我获取):MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测
- 进阶版完整程序和数据获取方式:私信博主。
% 构建模型
numFeatures = size(XTrain,1); % 输入特征数
numHiddenUnits = 200; % 隐藏单元数
numQuantiles = 1; % 分位数数目
layers = [ ...sequenceInputLayer(numFeatures)bilstmLayer(numHiddenUnits,'OutputMode','last')dropoutLayer(0.2)fullyConnectedLayer(numQuantiles)regressionLayer];
options = trainingOptions('adam', ...'MaxEpochs',50, ...'MiniBatchSize',64, ...'GradientThreshold',1, ...'Shuffle','every-epoch', ...'Verbose',false);
net = trainNetwork(XTrain,YTrain,layers,options); % 训练模型% 测试模型
YPred = predict(net,XTest); % 预测输出
quantiles = [0.1,0.5,0.9]; % 分位数
for i = 1:length(quantiles)q = quantiles(i);epsilon = YTest - YPred(:,i); % 预测误差lag = 10; % 滞后期数sigma = median(abs(epsilon(max(1,end-lag+1):end))) * 1.483; % 置信区间lb = YPred(:,i) - sigma * norminv(1-q/2,0,1); % 置信区间下限ub = YPred(:,i) + sigma * norminv(1-q/2,0,1); % 置信区间上限disp(['Quantile:',num2str(q),' MAE:',num2str(mean(abs(epsilon))),' Width:',num2str(mean(ub-lb))]);
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340
相关文章:
区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测
区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测 目录 区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 进阶版 基础版 基本介绍 MATLAB实现QRBiLS…...
看一看吧,面试真的卷......
大家好,最近有不少小伙伴在后台留言,今年面试实在是太卷了,不知道从何下手! 不论是跳槽涨薪,还是学习提升!先给自己定一个小目标,然后再朝着目标去努力就完事儿了! 为了帮大家节约…...
Python——1
一、注释 (1)单行注释:#需要注释的内容(#) (2)多行注释:需要注释的内容(三引号) 二、变量及变量类型 1.变量 语法定义:变量名 变量值&#…...
bgp团体属性配置案例一
RouterA的配置 sysname RouterA interface GigabitEthernet1/0/0 ip address 192.168.0.1 255.255.255.0 interface LoopBack0 ip address 1.1.1.1 255.255.255.255 bgp 10 router-id 1.1.1.1 //Router ID,建议配置为LoopBack0的IP地址 peer 192.168.0.2 as-number …...
mybatis-plus配置日志实现方式
Mybatis-plus是一个基于Mybatis的强大框架,可以帮助开发者快速地开发高质量的数据库应用程序。Mybatis-plus提供了许多配置项,其中一个重要的配置项是log-impl。 log-impl配置项定义了Mybatis-plus的日志实现方式,有两种可选的方式ÿ…...
Cy5.5 NHS ester 氨基反应性荧光染料Cyanine5.5 -NHS
Cy5.5 NHS ester是一种常用的荧光探针,可用于细胞或组织的荧光标记,也可用于蛋白质或核酸的标记。Cy5.5 NHS ester的荧光峰位于近红外区域,波长为675nm,具有较强的荧光强度和较长的荧光寿命,适合于生物分子在体内或组织…...
深度思考:在 AI 时代,你会被放大一千倍的能力是什么?
Datawhale干货 作者:艾芙,复旦大学,百姓AI教育负责人 前言 大家晚上好,我是艾芙,百姓 AI 的 AI 教育负责人。 先做一下自我介绍,我是一个在技术圈和教育圈反复横跳的斜杠中年了。大约在 5 年前,…...
蚂蚁实时低代码研发和流批一体的应用实践
摘要:本文整理自蚂蚁实时数仓架构师马年圣,在 Flink Forward Asia 2022 流批一体专场的分享。本篇内容主要分为四个部分: 实时应用场景与研发体系低代码研发流批一体规划展望 点击查看原文视频 & 演讲PPT 一、实时应用场景与研发体系 蚂蚁…...
5 创建映射
5 映射 上边章节安装了ik分词器,如果在索引和搜索时去使用ik分词器呢?如何指定其它类型的field,比如日期类型、数 值类型等。 本章节学习各种映射类型及映射维护方法。 5.1 映射维护方法 1、查询所有索引的映射: GET…...
windows注册表参数(%1,%2,%v) windows注册表是不区分大小写的.
windows注册表是不区分大小写的. 参数 含义 %1 文件路径 %2 系统默认的打印机 %3 文件扇区 %4 端口 %D 文件路径 %L 文件长路径 %V 文件路径 %W 当前文件的父目录的路径 参考:https://blog.csdn.net/meng_suiga/article/details/79485855 ————…...
基于SpringBoot的大学生租房系统
背景 大学生租房系统设计的目的是建立一个高效的平台,采用简洁高效的Java语言与Mysql数据库等技术,设计和开发了本大学生租房系统设计。该系统主要实现了用户和房主通过系统注册用户,登录系统后能够编辑自己的个人信息、查看首页,…...
NetApp 利用适用于混合云的实时解决方案解决芯片设计方面的数据管理挑战
电子设计自动化 (EDA) 成本持续增加,而周期时间缩短。这些都为 EDA 设计带来了前所未有的挑战,对现代高性能工作流的需求变得从未如此巨大。 联想凌拓芯片设计行业存储解决方案及最佳实践 联想凌拓芯片行业数据存储与管理解决方案,针对EDA…...
Rust + WASM 入门
一、参考资料 参考官方技术文档 https://rustwasm.github.io/ 二、安装脚手架 cargo-generate # cargo-generate 用于快速生成 WASM 项目的脚手架(类似 create-react-app) cargo install cargo-generate 三、下载安装 wasm-pack.exe 打包工具 双击安装…...
【操作系统】内存空间
最小的操作系统Hello world 想要pmap这个进程,需要进程号 但是这个进程在启动的一瞬间就执行完了 用GDB把程序暂停下来,然后用pmap观察地址空间 用info inferiors得到gdb里的进程号 ro 可读 :只读数据 rx 可读可执行 :代码 rw 可…...
详解静态、动态代理以及应用场景
一篇不太一样的代理模式详解,仔细阅读,你一定会获取不一样的代理见解,而不是人云亦云。 查看了社区里关于代理模式描述,发现很多博客千篇一律甚至存在共性错误,写此文提出自己对代理的见解。 静态代理动态代理 JDKCGLi…...
ChatGLM-6B本地cpu部署
ChatGLM-6B是清华团队研发的机器人对话系统,类似ChatGPT,但是实际相差很多,可以当作一个简单的ChatGPT。 ChatGLM部署默认是支持GPU加速,内存需要32G以上。普通的机器无法运行。但是可以部署本地cpu版本。 本地部署,需…...
算法修炼之练气篇——练气七层
博主:命运之光 专栏:算法修炼之练气篇 前言:每天练习五道题,炼气篇大概会练习200道题左右,题目有C语言网上的题,也有洛谷上面的题,题目简单适合新手入门。(代码都是命运之光自己写的…...
vscode常用快捷方式
基本编辑 Ctrl X:剪切当前行或选定内容 Ctrl C:复制当前行或选定内容 Ctrl V:粘贴当前行或剪切板内容 Ctrl Z:撤销上一步操作 Ctrl Y:恢复上一步撤销的操作 Ctrl F:在当前文件中查找内容 Ctrl H&am…...
如何压缩mp3文件大小,5分钟学会4种方法
如何压缩mp3文件大小?我们在开车的时候都很喜欢听歌,一般歌曲库里的mp3文件都很多,小编的就有上千首。如果我们还想要增加更多mp3文件,有时候就会出现内存不足的情况啦。所以我们需要压缩mp3文件大小,这样才能在我们手…...
从0搭建Vue3组件库(十二):引入现代前端测试框架 Vitest
Vitest 是个高性能的前端单元测试框架,它的用法其实和 Jest 差不多,但是它的性能要优于 Jest 不少,还提供了很好的 ESM 支持,同时对于使用 vite 作为构建工具的项目来说有一个好处就是可以公用同一个配置文件vite.config.js。因此本项目将会使用 Vitest 作为测试框架。 安装 …...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
