【论文阅读】Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning
论文下载
GitHub
bib:
@INPROCEEDINGS{,title = {Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning},author = {Eric Arazo and Diego Ortego and Paul Albert and Noel E O'Connor and Kevin McGuinness},booktitle = {IJCNN},year = {2020},pages = {1--8}
}
1. 摘要
Semi-supervised learning, i.e. jointly learning from labeled and unlabeled samples, is an active research topic due to its key role on relaxing human supervision.
总览半监督学习。
In the context of image classification, recent advances to learn from unlabeled samples are mainly focused on consistency regularization methods that encourage invariant predictions for different perturbations of unlabeled samples.
提到半监督分类中的一致性正则。
We, conversely, propose to learn from unlabeled data by generating soft pseudo-labels using the network predictions.
提到本文中适用了伪标签技术(soft pseudo-labels)。
We show that a naive pseudo-labeling overfits to incorrect pseudo-labels due to the so-called confirmation bias and demonstrate that mixup augmentation and setting a minimum number of labeled samples per mini-batch are effective regularization techniques for reducing it.
核心的贡献。提出了确认偏差(confirmation bias),本文贡献是证明了mixup augmentation和setting a minimum number of labeled samples per mini-batch是有效减少确认偏差的正则技术。
The proposed approach achieves state-of-the-art results in CIFAR-10/100, SVHN, and Mini-ImageNet despite being much simpler than other methods.
These results demonstrate that pseudo-labeling alone can outperform consistency regularization methods, while the opposite was supposed in previous work.
这一点就很令人惊讶了,伪标签技术的方法超过了一致性正则的方法。还没看原文,应该是还没有出现FixMatch和FlexMatch方法。
2. 算法描述
| 符号 | 意义 |
|---|---|
| D l = { ( x i , y i ) } i = 1 N l D_l = \{(x_i, y_i)\}^{N_l}_{i=1} Dl={(xi,yi)}i=1Nl | 有标记数据 |
| D u = { x i } i = 1 N u D_u = \{x_i\}^{N_u}_{i=1} Du={xi}i=1Nu | 无标记数据 |
| D ~ u = { ( x i , y ~ i } i = 1 N \widetilde{D}_u = \{(x_i, \widetilde{y}_i\}^{N}_{i=1} D u={(xi,y i}i=1N | 训练数据,其中对于有标记数据 y ~ i \widetilde{y}_i y i表示真实标签,对于无标记数据 y ~ i \widetilde{y}_i y i表示对应伪标签。 |
| h θ h_{\theta} hθ | 模型及对应的参数 θ \theta θ |
经典的交叉熵损失函数:
ℓ ∗ ( θ ) = − ∑ i = 1 N y ~ i T log ( h θ ( x i ) ) (1) \ell^*(\theta) = -\sum_{i=1}^{N}\widetilde{y}_i^{\mathsf{T}}\log(h_{\theta}(x_i)) \tag{1} ℓ∗(θ)=−i=1∑Ny iTlog(hθ(xi))(1)
Note:
In particular, we store the softmax predictions h θ ( x i ) h_{\theta}(x_i) hθ(xi) of the network in every mini-batch of an epoch and use them to modify the soft pseudo-label y ~ \widetilde{y} y for the N u N_u Nu unlabeled samples at the end of every epoch.
We proceed as described from the second to the last training epoch, while in the first epoch we use the softmax predictions for the unlabeled samples from a model trained in a 10 epochs warm-up phase using the labeled data subset D u D_u Du.
Soft pseudo-labels在本文中表示上一个阶段网络对于无标记样本的预测。注意区别于Hard pseudo-labels,Soft pseudo-labels不是one-hot向量,而是对于样本预测的概率向量(softmax)。
Two Regularizations:
ℓ = ℓ ∗ + λ A R A + λ H R H (2) \ell = \ell^*+\lambda_A R_A + \lambda_H R_H \tag{2} ℓ=ℓ∗+λARA+λHRH(2)
where
- R A = ∑ c = 1 C p c log ( p c h ‾ c ) R_A = \sum_{c=1}^{C}p_c\log(\frac{p_c}{\overline{h}_c}) RA=∑c=1Cpclog(hcpc);
- R H = − 1 N ∑ i = 1 N ∑ c = 1 C h θ c ( x i ) log ( h θ c ( x i ) ) R_H = -\frac{1}{N}\sum_{i=1}^{N}\sum_{c=1}^{C}h_{\theta}^c(x_i) \log(h_{\theta}^c(x_i)) RH=−N1∑i=1N∑c=1Chθc(xi)log(hθc(xi)).
R A R_A RA不鼓励将所有样本分配到单个类。其中 p c p_c pc表示类别 c c c的先验概率分布, h ‾ c \overline{h}_c hc表示模型在数据集中所有 c c c类别样本中的平均概率(softmax)。意思是本来有猫有狗的类别,网络为了省事,直接不管三七二十一,直接预测一个猫,这个现象在不平衡数据集上很容易出现。
R H R_H RH(entropy regularization)鼓励每个软伪标记的概率分布集中在单个类上,避免了网络可能因弱引导而陷入的局部最优。这一点容易理解,就是对于一个样本,鼓励预测的类的概率远远大于其他类别。
Confirmation bias:
Overfitting to incorrect pseudo-labels predicted by the network is known as confirmation bias.
It is natural to think that reducing the confidence of the network on its predictions might alleviate this problem and improve generalization.
Note: 这里将确认偏差(confirmation bias)定义为网络对于不正确伪标签的过拟合。降低对于不正确标签的权重可以缓解这一现象。
mixup regularization:
Recently, mixup data augmentation introduced a strong regularization technique that combines data augmentation with label smoothing, which makes it potentially useful to deal with this bias.
Question:
- mixup的细节,在单个批次中,怎么mixup?
- mixup样本的标签如何确定?
setting a minimum number of labeled samples per mini-batch:
Oversamplingthe labelled examples by setting a minimum number of labeled samples per mini-batch k (as done in other works provides a constant reinforcement with correct labels during training, reducing confirmation bias and helping to produce better pseudo-labels.
Question:
- 单个批次样本如何配置,多少个有标记数据,多少个无标记数据?
相关文章:
【论文阅读】Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning
论文下载 GitHub bib: INPROCEEDINGS{,title {Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning},author {Eric Arazo and Diego Ortego and Paul Albert and Noel E OConnor and Kevin McGuinness},booktitle {IJCNN},year {2020},pages …...
三次输错密码后,系统是怎么做到不让我继续尝试的?
故事背景 忘记密码这件事,相信绝大多数人都遇到过,输一次错一次,错到几次以上,就不允许你继续尝试了。 但当你尝试重置密码,又发现新密码不能和原密码重复: 相信此刻心情只能用一张图形容: 虽…...
医学影像系统源码,三维后处理和重建 PACS源码
医学影像系统源码,三维后处理和重建 PACS源码 医学影像系统由PACS系统、RIS系统组成,提供与HIS的接口(HL7或其他类型)。 主要功能介绍 信息预约登记 支持对患者、检查项目、申请医生、申请单据、设备等信息进行管理。且支持检查…...
golang汇编之函数(四)
基本语法 函数标识符通过TEXT汇编指令定义,表示该行开始的指令定义在TEXT内存段。TEXT语句后的指令一般对应函数的实现,但是对于TEXT指令本身来说并不关心后面是否有指令。我个人觉得TEXT和LABEL定义的符号是类似的,区别只是LABEL是用于跳转…...
成都爱尔李晓峰主任:眼睛干到发出求救信号,快注意!
眼睛总感觉痒痒的,时不时干涩、酸胀、畏光? 它在提醒你,它太干了救救它! 干眼如何判断? 干眼症是由于泪液的质和量异常或者泪液的流体动力学障碍而导致眼表无法保持湿润的一种眼病。会发生眼睛干涩、酸胀、畏光、灼热感、异物感、看东西容易…...
HiEV独家 | 比亚迪高阶智驾终于来了 ,新款汉首发,多车型将搭载
作者 | 德新 编辑 | 马波 比亚迪上马高阶辅助驾驶,首先从高速NOA开始。 HiEV获悉,今年第三季度,比亚迪将在新的 汉车型 上,搭载高速领航辅助驾驶功能(俗称高速NOA)。继汉之后,王朝系列唐…...
全面解析Linux指令和权限管理
目录 一.指令再讲解1.时间相关的指令2.find等搜索指令与grep指令3.打包和压缩相关的指令4.一些其他指令与热键二.Linux权限1.Linux的权限管理2.文件类型与权限设置3.目录的权限与粘滞位 一.指令再讲解 1.时间相关的指令 date指令: date 用法:date [OPTION]… [FOR…...
C++ enum 和enum class
文章目录 C enum 和 enum class共同点区别 C enum 和 enum class 在C中, enum 是一种定义枚举类型的方法。 一个枚举是一个整数值的命名集合。 可以通过以下方式创建一个枚举类型: enum Color {RED,GREEN,BLUE };这里我们定义了一个名为 Color 的枚举类…...
设计模式之中介者模式
参考资料 曾探《JavaScript设计模式与开发实践》;「设计模式 JavaScript 描述」中介者模式JavaScript 设计模式之中介者模式 定义 在我们生活的世界中,每个人每个物体之间都会产生一些错综复杂的联系。在应用程序里也是一样,程序由大大小小…...
DJ5-8 磁盘存储器的性能和调度
目录 5.8.1 磁盘性能简述 1、磁盘的结构和布局 2、磁盘的类型 3、磁盘数据的组织和格式 4、磁盘的访问过程 5、磁盘访问时间 5.8.2 磁盘调度算法 1、先来先服务 FCFS 2、最短寻道时间优先 SSTF 3、扫描算法(电梯算法)SCAN 4、循环扫描算法 …...
springboot+vue留守儿童爱心网站(源码+文档)
风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的留守儿童爱心网站。项目源码以及部署相关请联系风歌,文末附上联系信息 。 💕💕作者:风…...
数字设计小思 - 谈谈非理想时钟的时钟偏差
写在前面 本系列整理数字系统设计的相关知识体系架构,为了方便后续自己查阅与求职准备。在FPGA和ASIC设计中,时钟信号的好坏很大程度上影响了整个系统的稳定性,本文主要介绍了数字设计中的非理想时钟的偏差来源与影响。 (本文长…...
智慧厕所引导系统的应用
智慧公厕引导系统是一种基于智能化技术的公厕管理系统,可以为如厕者提供更加便捷、舒适、安全的如厕环境和服务,同时也可以引导如厕者文明如厕,营造文明公厕的氛围。智慧公厕引导系统可以通过智能引导屏、手机小程序等方式,为如厕…...
眼球追踪、HDR、VST,从代码挖掘Valve下一代VR头显
擅长爆料、挖掘线索的Brad Lynch,此前发布了Quest Pro等设备的线索文章引发关注。近期,又公布一系列与“Valve Deckard”VR头显相关消息,比如支持眼球追踪、HDR、VST透视、Wi-Fi网络等等。在SteamVR 1.26.1测试版更新、Steam用户端、Gamesc…...
【MYSQL】聚合函数和单表/多表查询练习、子查询、内外连接
目录 1.聚合函数 1.1.group by子句 1.2.having语句 2.单表查询 2.2单表查询 3.多表查询 3.2.子查询 5.内链接 6.外连接 1.聚合函数 函数说明count返回查询到的数据的数量sum返回查询到的数据的总和avg返回查询到的数据的平均值max返回查询到的数据的最大值min返回查询…...
分布式数据库集成解决方案
分布式数据库集成解决方案 分析访问部署扩展.1 以界面方式创建数据库(采用DBCA) # 背景 由于公司业务的发展,要求在其它三个城市设立货仓,处理发货业务。公司本部运行着一套用Sybase数据库的MIS系统可以实现发货,该系统…...
如何配置静态路由?这个实例详解交换机的静态路由配置
一、什么是静态路由 静态路由是一种路由的方式,它需要通过手动配置。静态路由与动态路由不同,静态路由是固定的,不会改变。一般来说,静态路由是由网络管理员逐项加入路由表,简单来说,就是需要手动添加的。…...
OpenCV教程——图像操作。读写像素值,与/或/非/异或操作,ROI
1.读取像素值 我们可以通过mat.ptr<uchar>()获取图像某一行像素数组的指针。因此如果想要读取点(x50,y0)(⚠️即(row0,col50))的像素值,可以这样做:mat.ptr<uchar>(0)[50]。 在本节将介绍另外几种直接读…...
Winforms不可见组件开发
Winforms不可见组件开发 首先介绍基本知识,有很多的朋友搞不清楚Component与Control之间的区别,比较简单形象的区别有下面两点: 1、Component在运行时不能呈现UI,而Control可以在运行时呈现UI。 2、Component是贴在容器Container上的,而Control则是贴…...
静态链接库与动态链接库
静态链接库与动态链接库 一、从源程序到可执行文件二、编译、链接和装入三、静态链接库与动态链接库四、静态链接库与动态链接库的制作与使用1.静态库的制作及使用2.动态库的制作及使用 一、从源程序到可执行文件 由于计算机无法直接理解和执行高级语言(C、C、Java…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
