热图 -- pheatmap or ggplot2
文章目录
- brief
- 数据准备
- pheatmap实例
- 最朴素的方式
- 数据缩放
- 取消聚类
- 更改每个小方格的大小
- 聚类以及聚类方式和参数
- 修改热图呈现的颜色
- 修改legend
- ggplot2实例
- ggplot2实例变式
- 添加 group bar
- 做成dotplot
- pheatmap 多图组合问题
brief
这里主要记录了pheatmap 以及 ggplot2实现热图的步骤:
数据准备
df_ <- df2[1:50,2:13]
df_ <- apply(df_,MARGIN = 2,FUN = as.numeric)
df_pheatmap::pheatmap(df_)
pheatmap实例
最朴素的方式
pheatmap::pheatmap(df_)
数据缩放
pheatmap::pheatmap(df_,scale = "column") # scale = "column" / "raw" / "none" 按照行/列进行数据的缩放
取消聚类
pheatmap::pheatmap(df_,cluster_rows = F,cluster_cols = F)
更改每个小方格的大小
pheatmap::pheatmap(df_,cluster_rows = F,cluster_cols = F,cellwidth = 20,cellheight = 20)
聚类以及聚类方式和参数
pheatmap::pheatmap(df_,cluster_rows = T,clustering_distance_rows = "correlation",cluster_cols = T,clustering_distance_cols = "manhattan",clustering_method = "median")
# clustering method has to one form the list: 'ward', 'ward.D', 'ward.D2', 'single','complete', 'average', 'mcquitty', 'median' or 'centroid'.
# 也就是层次聚类中计算距离的方法
修改热图呈现的颜色
pheatmap::pheatmap(df_,color = c('#6699CC','#FFFF99','#CC3333'))
修改legend
pheatmap::pheatmap(df_,legend = T,legend_breaks = c(-3,0,3)) # 自己指定legend在什么位置标数字
pheatmap::pheatmap(df_,legend = T,legend_labels = c("h","m","l")) # 自己指定legend标记的字符
# 当然了还有很多参数,用的时候再看吧
pheatmap::pheatmap(df_,show_colnames = T,show_rownames = T)
ggplot2实例
哪ggplot2可以实现热图嘛?
# 先把长格式数据转变为宽格式数据
df_ <- reshape2::melt(df_)
df_
p1<-ggplot(df_,aes(x=Var2,y=Var1,fill=value))+xlab("")+ylab("")
p1p2 <- p1+geom_raster()+scale_fill_gradient2(low="#003366", high="#990033", mid="white")+theme_minimal()
p2# geom_raster() geom_rect() and geom_tile() do the same thing ,都是画小方块的,参数不同
# Scales control the details of how data values are translated to visual properties
# scale_*_gradient creates a two colour gradient (low-high),
# scale_*_gradient2 creates a diverging colour gradient (low-mid-high),
# scale_*_gradientn creates a n-colour gradient
ggplot2实例变式
添加 group bar
df_ <- df2[1:50,2:13]
df_ <- as.data.frame(apply(df_,MARGIN = 2,FUN = as.numeric))
df_group <- colnames(df_) %>% as.data.frame() %>% mutate(group=c(rep("ST",3),rep("TZ",3),rep("TL",3),rep("TS",3))) %>%mutate(p="group") %>%ggplot(aes(.,y=p,fill=group))+geom_tile() + scale_y_discrete(position="right") +theme_minimal()+xlab(NULL) + ylab(NULL) +theme(axis.text.x = element_blank())+labs(fill = "Group")#画热图并将以上信息添加进去:
# 先把长格式数据转变为宽格式数据
df_ <- df2[1:50,2:13]
df_ <- apply(df_,MARGIN = 2,FUN = as.numeric)
df_ <- reshape2::melt(df_)
df_p1<-ggplot(df_,aes(x=Var2,y=Var1,fill=value)) #热图绘制
p2 <- p1+geom_raster()+scale_fill_gradient2(low="#003366", high="#990033", mid="white")+geom_tile()+theme_minimal()+theme(axis.text.x =element_text(angle =90,hjust =0.5,vjust = 0.5))+xlab(NULL) + ylab(NULL)
p2 %>%aplot::insert_top(group, height = .05)
做成dotplot
p1<-ggplot(df_,aes(x=Var1,y=Var2,fill=value))+xlab("")+ylab("")p3 <- p1+scale_color_gradientn(values = seq(0,1,0.2),colours = c('#6699CC','#FFFF99','#CC3333'))+theme_bw()+geom_point(aes(size=value,color=value))+guides(fill="none",color="none",size="none")+theme(panel.grid = element_blank(),axis.text.x =element_text(angle =45,hjust =1))
p3
pheatmap 多图组合问题
这部分内容来自:https://www.jianshu.com/p/8fc823c39488
在进行多图绘制的时候,用cowplot::plot_grid函数进行多图组合,结果在多图组合的时候,别的ggplot画图的对象没有任何问题,但是pheatmap的出现问题,并抛出如下警告信息:
p4<-cowplot::plot_grid(p1, p2, p3, ncol=1, labels=LETTERS[1:3])
Warning message:
In as_grob.default(plot) :Cannot convert object of class pheatmap into a grob.
cowplot::plot_grid多图组合的话,必须得是ggplot对象,而pheatmap不是ggplot对象,因此才会出现此问题。解决办法如下:
library(pheatmap)
test <- matrix(rnorm(200), 20, 10)
mfs <- mfs_ma <- mfs_fe <- pheatmap(test)
cowplot::plot_grid(mfs$gtable, mfs_ma$gtable, mfs_fe$gtable,ncol= 3, labels=LETTERS[1:3])
相关文章:

热图 -- pheatmap or ggplot2
文章目录 brief数据准备 pheatmap实例最朴素的方式数据缩放取消聚类更改每个小方格的大小聚类以及聚类方式和参数修改热图呈现的颜色修改legend ggplot2实例ggplot2实例变式添加 group bar做成dotplot pheatmap 多图组合问题 brief 这里主要记录了pheatmap 以及 ggplot2实现热…...

EIScopus检索 | 2023年智能交通与未来出行国际会议(CSTFM 2023)
会议简介 Brief Introduction 2023年智能交通与未来出行国际会议(CSTFM 2023) 会议时间:2023年7月28日-30日 召开地点:中国长沙 大会官网: CSTFM 2023-2023 International Conference on Smart Transportation and Future Mobility(CSTFM 202…...

如何系列 如何在Windows和Linux安装Nginx
文章目录 Windows一 下载Nginx二 启动Nginx三 验证 Linux一 安装依赖项二 下载Nginx源码包三 安装四 验证五 常用命令附录 Nginx是一款高性能的开源Web服务器和反向代理服务器,被广泛用于构建现代化的Web应用和提供静态内容。本篇博文将教你如何在Windows和Linux操作…...

“1+X+N”模式助力企业数字化转型
近期,中电金信顺利完成某股份制银行“基于战略解析与业务架构的全行科技规划项目”交付。针对客户的实际业务需求,中电金信采用“1XN”服务模式,服务客户全面的企业架构转型规划。项目组联合行方协同创新,首次将企架建模方法应用于…...

JavaEE(系列3) -- 多线程(线程的中断与线程等待)
新内容开始之前,我们总结一个知识点. Thread类中的start方法和run方法的区别? start(): 用start方法来启动线程,真正实现了多线程运行,这时无需等待run方法体代码执行完毕而直接继续执行下面的代码。通过调用Thread类的start()方法来启动一个线程&#…...
想装一台自己的电脑,可以先了解下这些问题
时间:2023年5月11日19:09:56 ✨✨✨问题清单: ↪️计算机中CPU和内存是什么?分别有什么作用? ↪️为什么计算机中要有内存?CPU访问内存中的数据和访问硬盘中的数据有什么差别? ↪️CPU的基准速度表示什…...

Redis未授权漏洞复现
Redis简介 Redis是C语言开发的一个开源高性能(key-value)键值对类型的内存NoSQL数据库,可以用作数据库、缓存、信息中间件(性能非常优秀,支持持久化到硬盘且高可用)。由于其自身特点,可以广泛应用在数据集群ÿ…...

跳槽,如果没有更好的选择,可以去美团试试···
在美团干了半年,说一下自己的感受,美团是一家福利中等,工资待遇中上,高层管理团队强大,加班强度一般,技术不错,办公环境一般,工作氛围中上,部门差距之间工作体验差距巨大…...

Java10
Java10 (一)、配置文件(二)、多线程2.1 并发和并行2.2 多线程的实现方式2.3 常见成员方法2.3.1 线程的优先级2.3.2 守护线程(备胎线程)2.3.3 礼让线程和插入线程 2.4 线程生命周期2.5 线程安全问题2.6 锁2.…...
IMS call通话类型对比差异
IMS call呼入/呼出流程对比 呼出MO call大致流程 1)UE发送INVITE消息发起IMS call 2)UE接收网络返回的100 Trying 3)UE接收183 Session Progress 4)UE发送PRACK确认收到183 5)UE接收200 OK(PRACK) 6)UE发送UPDATE进行precondition流程 7)UE接收200 OK(UPDATE) 8…...

5.2 中心极限定理
学习目标: 要学习中心极限定理,我会采取以下几个步骤: 学习基本概念:了解什么是随机变量、样本、总体、概率密度函数等基本概念,为学习中心极限定理打下基础;学习正态分布:中心极限定理的核心…...
JVM 内存分哪几个区,如和判断一个对象是否存活
JVM 内存分哪几个区,每个区的作用是什么? java 虚拟机主要分为以下一个区:方法区: 1. 有时候也成为永久代,在该区内很少发生垃圾回收,但是并不代表不发生 GC,在这里进行的 GC 主要是对方法区里的常量池和对类型…...
在Spring Boot微服务使用Jedis操作Redis List列表
记录:408 场景:在Spring Boot微服务使用Jedis操作Redis List列表。 版本:JDK 1.8,Spring Boot 2.6.3,redis-6.2.5,jedis-3.7.1。 1.微服务中配置Redis信息 1.1在application.yml中Jedis配置信息 hub:example:redis:jedis:host: 192.168.…...

springboot + vue 部署 阿里云云服务器 ECS
安装所需文件 安装mysql5.7 下载MySQL的yum源配置 wget http://dev.mysql.com/get/mysql57-community-release-el7-11.noarch.rpm安装MySQL的yum源 yum -y install mysql57-community-release-el7-11.noarch.rpm使用yum方式安装MySQL5.7(下载需要点时间…...
mysql 日期 计算 时间差 天数差
mysql计算两个日期的时间差 第一种:TIMESTAMPDIFF函数 三个参数。第一个参数是比较的类型:FRAC_SECOND、SECOND、 MINUTE、 HOUR、 DAY、 WEEK、 MONTH、 QUARTER、YEAR几种类型。第二、三参数是时间,后减前: SELECT TIMESTAMPDIFF(DAY,20…...

不用网闸、FTP的话 如何实现内外网数据交换?
网络隔离已然成为很多企业首选的数据保护方式,即使是内部人员之间,也是不能随意的发送敏感文件的。但是,文件的流转交互,又是不可避免的,网络隔离保障了企业网络安全,但在具体实践中仍需解决各隔离网间的数…...
探寻Spring MVC的奥秘:内部组件与工作流程详解
Spring MVC是一个基于MVC架构模式的Web框架,是Spring框架的一个组件。它提供了一套Web应用程序开发的全面解决方案,包括从请求到响应的处理流程、处理请求的控制器、视图解析器、国际化和验证器等。 在这篇文章中,我们将介绍Spring MVC框架的…...
eclipse svn ClassNotFoundException: javassist.ClassPool
eclipse 五月 10, 2023 9:26:49 上午 org.apache.catalina.core.StandardContext filterStart 严重: Exception starting filter struts2 java.lang.reflect.InvocationTargetException - Class: com.opensymphony.xwork2.inject.ContainerImpl M e t h o d I n j e c t o r F…...
广度优先遍历搜索迷宫最短路径
思路分析 由于广度是扩散逐层的方式遍历,相当于是多条路同时跑,最后先到终点就是最短路径了。 广度优先搜索主要使用队列来进行处理 路径用一个单独的vector存储,每一个点的坐标由二维转为一维,如(2, 3)存储在vector中下标为2*…...
分布式计算基础知识
分布式系统的概念 分布式系统是由多个独立计算机组成的系统,这些计算机通过网络进行通信和协作,共同完成一个任务。分布式系统的特点是具有高可用性、可扩展性和容错性。 在分布式系统中,每个计算机节点都可以独立地执行任务,同…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...