当前位置: 首页 > news >正文

微积分python基础

微积分基础(python)

文章目录

  • 微积分基础(python)
      • 1 函数与极限
      • 2 求导与微分
      • 3 不定积分
      • 4 定积分

1 函数与极限

# 导入sympy库
from sympy import *
# 将x符号化
x = Symbol("x")
x

x \displaystyle x x

# 利用sympy中solve函数求解方程
X = solve(x**2-10*x+21,x)
X
print("原方程的解为:",X)
原方程的解为: [3, 7]
# 定义集合
A = set("12345")
B = set("123")
print("集合AB的并为:",A | B)
print("集合AB的交为:",A & B)
print("集合AB的差为:",A - B)
集合AB的并为: {'4', '2', '1', '5', '3'}
集合AB的交为: {'1', '3', '2'}
集合AB的差为: {'4', '5'}
# 自变量趋近无穷
n = Symbol("n")
s = n**2/(n**2+1)
result = limit(s,n,oo)
print("数列极限为:",result)
数列极限为: 1
# 自变量趋近有限值
x = Symbol("x")
s = (2-5*x**2)/(2*x+1)
print("函数极限为:",limit(s,x,-1/2))
函数极限为: oo
# 自变量趋近无穷大
x = Symbol("x")
s = (x+x**3)/(6*x**3)
print("函数极限为:",limit(s,x,oo))
函数极限为: 1/6

2 求导与微分

# 导入sympy库
from sympy import *
# 常数导数
x = Symbol("x")
C = 2
y = C
diff(y,x)

0 \displaystyle 0 0

# 幂函数导数
x = Symbol("x")
mu = Symbol("mu")
y = x**mu
diff(y,x)

μ x μ x \displaystyle \frac{\mu x^{\mu}}{x} xμxμ

# 指数函数求导
a = Symbol("a")
x = Symbol("x")
y = a**x
diff(y,x)

a x log ⁡ ( a ) \displaystyle a^{x} \log{\left(a \right)} axlog(a)

# 对数函数求导
a = Symbol("a")
x = Symbol("x")
y = log(x,a)
diff(y,x)

1 x log ⁡ ( a ) \displaystyle \frac{1}{x \log{\left(a \right)}} xlog(a)1

# 正弦求导
x = Symbol("x")
y = sin(x)
diff(y,x)

cos ⁡ ( x ) \displaystyle \cos{\left(x \right)} cos(x)

# 反正弦函数求导
x = Symbol("x")
y = asin(x)
diff(y,x)

1 1 − x 2 \displaystyle \frac{1}{\sqrt{1 - x^{2}}} 1x2 1

# 求导四则运算
x = Symbol("x")
u = log(x,a)
v = x**2+1
y = u+v
diff(y,x)

2 x + 1 x log ⁡ ( a ) \displaystyle 2 x + \frac{1}{x \log{\left(a \right)}} 2x+xlog(a)1

y = u - v
diff(y,x)

− 2 x + 1 x log ⁡ ( a ) \displaystyle - 2 x + \frac{1}{x \log{\left(a \right)}} 2x+xlog(a)1

y = u*v
diff(y,x)

2 x log ⁡ ( x ) log ⁡ ( a ) + x 2 + 1 x log ⁡ ( a ) \displaystyle \frac{2 x \log{\left(x \right)}}{\log{\left(a \right)}} + \frac{x^{2} + 1}{x \log{\left(a \right)}} log(a)2xlog(x)+xlog(a)x2+1

y = u/v
diff(y,x)

− 2 x log ⁡ ( x ) ( x 2 + 1 ) 2 log ⁡ ( a ) + 1 x ( x 2 + 1 ) log ⁡ ( a ) \displaystyle - \frac{2 x \log{\left(x \right)}}{\left(x^{2} + 1\right)^{2} \log{\left(a \right)}} + \frac{1}{x \left(x^{2} + 1\right) \log{\left(a \right)}} (x2+1)2log(a)2xlog(x)+x(x2+1)log(a)1

# 复合函数求导
x = Symbol("x")
u = Symbol("u")
u = x**2
y =sin(u)
diff(y,x)

2 x cos ⁡ ( x 2 ) \displaystyle 2 x \cos{\left(x^{2} \right)} 2xcos(x2)

# 链式求导
x = Symbol("x")
u = Symbol("u")
v = Symbol("v")
v = sin(x)**2
u = tan(v)**2
y = log(u)**2
diff(y,x)

8 ( tan ⁡ 2 ( sin ⁡ 2 ( x ) ) + 1 ) log ⁡ ( tan ⁡ 2 ( sin ⁡ 2 ( x ) ) ) sin ⁡ ( x ) cos ⁡ ( x ) tan ⁡ ( sin ⁡ 2 ( x ) ) \displaystyle \frac{8 \left(\tan^{2}{\left(\sin^{2}{\left(x \right)} \right)} + 1\right) \log{\left(\tan^{2}{\left(\sin^{2}{\left(x \right)} \right)} \right)} \sin{\left(x \right)} \cos{\left(x \right)}}{\tan{\left(\sin^{2}{\left(x \right)} \right)}} tan(sin2(x))8(tan2(sin2(x))+1)log(tan2(sin2(x)))sin(x)cos(x)

# 二阶求导
diff(y,x,2)

( tan ⁡ 2 ( sin ⁡ ( x ) ) + 1 ) ( − ( tan ⁡ 2 ( sin ⁡ ( x ) ) + 1 ) cos ⁡ 2 ( x ) tan ⁡ 2 ( sin ⁡ ( x ) ) − sin ⁡ ( x ) tan ⁡ ( sin ⁡ ( x ) ) + 2 cos ⁡ 2 ( x ) ) \displaystyle \left(\tan^{2}{\left(\sin{\left(x \right)} \right)} + 1\right) \left(- \frac{\left(\tan^{2}{\left(\sin{\left(x \right)} \right)} + 1\right) \cos^{2}{\left(x \right)}}{\tan^{2}{\left(\sin{\left(x \right)} \right)}} - \frac{\sin{\left(x \right)}}{\tan{\left(\sin{\left(x \right)} \right)}} + 2 \cos^{2}{\left(x \right)}\right) (tan2(sin(x))+1)(tan2(sin(x))(tan2(sin(x))+1)cos2(x)tan(sin(x))sin(x)+2cos2(x))

# 计算函数拐点
from sympy import *
x = Symbol("x")
y = 2*x**3-12*x**2+18*x-2
# 一阶导数
df1 = diff(y,x)
df1

6 x 2 − 24 x + 18 \displaystyle 6 x^{2} - 24 x + 18 6x224x+18

# 二阶导数
df2 = diff(y,x,2)
df2

12 ( x − 2 ) \displaystyle 12 \left(x - 2\right) 12(x2)

print("二阶导数取值为0的点为",solve(df2))
print("拐点值为",y.subs(x,2))
二阶导数取值为0的点为 [2]
拐点值为 2
# 第一充分条件求极值点
from sympy import *
x = Symbol("x")
y = (x+3)**2*(x-1)**3
df = diff(y,x)
print("函数驻点为:",solve(df,x))
函数驻点为: [-3, -7/5, 1]
print("函数极值为",y.subs(x,-3),y.subs(x,-7/5),y.subs(x,1))
函数极值为 0 -35.3894400000000 0
# 第二充分条件求极值点
from sympy import *
y = 2*x**3-6*x**2+7
df = diff(y,x)
print("函数极值点为",solve(df,x))
函数极值点为 [0, 2]
df2 = diff(y,x,2)
print("二阶导数驻点的值为:",df2.subs(x,0),df2.subs(x,2))
二阶导数驻点的值为: -12 12
print("函数的极值为",y.subs(x,0),y.subs(x,2))
函数的极值为 7 -1

3 不定积分

x = Symbol("x")
f = cos(x)
integrate(f,x)

sin ⁡ ( x ) \displaystyle \sin{\left(x \right)} sin(x)

x = Symbol("x")
f = 1/(1+x**2)
integrate(f,x)

atan ⁡ ( x ) \displaystyle \operatorname{atan}{\left(x \right)} atan(x)

x = Symbol("x")
f = exp(x)*sin(x)
integrate(f,x)

e x sin ⁡ ( x ) 2 − e x cos ⁡ ( x ) 2 \displaystyle \frac{e^{x} \sin{\left(x \right)}}{2} - \frac{e^{x} \cos{\left(x \right)}}{2} 2exsin(x)2excos(x)

4 定积分

x = Symbol("x")
a = Symbol("a")
b = Symbol("b")
y = sin(a*x)*cos(b*x)
integrate(y,(x,a,b))

{ 0 for ( a = 0 ∧ b = 0 ) ∨ ( a = 0 ∧ a = b ∧ b = 0 ) ∨ ( a = 0 ∧ a = − b ∧ b = 0 ) ∨ ( a = 0 ∧ a = − b ∧ a = b ∧ b = 0 ) cos ⁡ 2 ( b 2 ) 2 b − cos ⁡ 2 ( a b ) 2 b for ( a = 0 ∧ a = − b ) ∨ ( a = − b ∧ a = b ) ∨ ( a = − b ∧ b = 0 ) ∨ ( a = 0 ∧ a = − b ∧ a = b ) ∨ ( a = − b ∧ a = b ∧ b = 0 ) ∨ a = − b − cos ⁡ 2 ( b 2 ) 2 b + cos ⁡ 2 ( a b ) 2 b for ( a = 0 ∧ a = b ) ∨ ( a = b ∧ b = 0 ) ∨ a = b a cos ⁡ ( a 2 ) cos ⁡ ( a b ) a 2 − b 2 − a cos ⁡ ( b 2 ) cos ⁡ ( a b ) a 2 − b 2 + b sin ⁡ ( a 2 ) sin ⁡ ( a b ) a 2 − b 2 − b sin ⁡ ( b 2 ) sin ⁡ ( a b ) a 2 − b 2 otherwise \displaystyle \begin{cases} 0 & \text{for}\: \left(a = 0 \wedge b = 0\right) \vee \left(a = 0 \wedge a = b \wedge b = 0\right) \vee \left(a = 0 \wedge a = - b \wedge b = 0\right) \vee \left(a = 0 \wedge a = - b \wedge a = b \wedge b = 0\right) \\\frac{\cos^{2}{\left(b^{2} \right)}}{2 b} - \frac{\cos^{2}{\left(a b \right)}}{2 b} & \text{for}\: \left(a = 0 \wedge a = - b\right) \vee \left(a = - b \wedge a = b\right) \vee \left(a = - b \wedge b = 0\right) \vee \left(a = 0 \wedge a = - b \wedge a = b\right) \vee \left(a = - b \wedge a = b \wedge b = 0\right) \vee a = - b \\- \frac{\cos^{2}{\left(b^{2} \right)}}{2 b} + \frac{\cos^{2}{\left(a b \right)}}{2 b} & \text{for}\: \left(a = 0 \wedge a = b\right) \vee \left(a = b \wedge b = 0\right) \vee a = b \\\frac{a \cos{\left(a^{2} \right)} \cos{\left(a b \right)}}{a^{2} - b^{2}} - \frac{a \cos{\left(b^{2} \right)} \cos{\left(a b \right)}}{a^{2} - b^{2}} + \frac{b \sin{\left(a^{2} \right)} \sin{\left(a b \right)}}{a^{2} - b^{2}} - \frac{b \sin{\left(b^{2} \right)} \sin{\left(a b \right)}}{a^{2} - b^{2}} & \text{otherwise} \end{cases} 02bcos2(b2)2bcos2(ab)2bcos2(b2)+2bcos2(ab)a2b2acos(a2)cos(ab)a2b2acos(b2)cos(ab)+a2b2bsin(a2)sin(ab)a2b2bsin(b2)sin(ab)for(a=0b=0)(a=0a=bb=0)(a=0a=bb=0)(a=0a=ba=bb=0)for(a=0a=b)(a=ba=b)(a=bb=0)(a=0a=ba=b)(a=ba=bb=0)a=bfor(a=0a=b)(a=bb=0)a=botherwise

x = Symbol("x")
f = sin(x)
integrate(f,(x,0,pi))

2 \displaystyle 2 2


-END-

相关文章:

微积分python基础

微积分基础(python) 文章目录 微积分基础(python)1 函数与极限2 求导与微分3 不定积分4 定积分 1 函数与极限 # 导入sympy库 from sympy import * # 将x符号化 x Symbol("x") xx \displaystyle x x # 利用sympy中solve函数求解方程 X solve(x**2-10*x21,x) X pri…...

Redis缓存数据库(一)

目录 一、概述 1、Redis 2、Redis的安装 Redis Windows环境设置 3、String: 字符串 3.1、字符串 3.2、数值 3.3、bitmap 4、Hash: 散列 5、List: 列表 6、Set: 集合 7、Sorted Set: 有序集合 一、概述 常识: 磁盘:1.寻址:ms&…...

物联网|uart串口相关寄存器|波特率设置及计算|发送处理代码|串口接收中断处理函数|物联网之蓝牙4.0 BLE基础-学习笔记(7)

文章目录 13 uart串口基础开发基本电路图:实验相关寄存器波特率设置及计算计算过程:设置中断发送处理代码串口接收中断处理函数main.c 13 uart串口基础开发 基本电路图: 实验相关寄存器 相关寄存器UxCSR、UxCSR、UxGCR、UxBUF、UxBAUD、CLK…...

有数·智享未来 | 新华三重磅发布绿洲平台3.0

5月10日,紫光股份旗下新华三集团以“有数智享未来”为主题,成功举办绿洲平台3.0新品发布会。全新一代绿洲平台实现内核进阶,以五大技术能力升级、五大行业方案沉淀、六类服务能力保障,三位一体构筑更领先的用数底座、更落地的用数…...

在Apex中获取Site URL

Foreword 目前SF暂未提供直接有效的方法在Apex获取SiteURL,我们可以在Idea (Access URL for a Site or Community from Apex)页面投票,除了下面提供的一种hack思路,当然也可以通过Custom Label手动维护。 Format of Site URL Sandbox site …...

【电子学会】2023年03月图形化三级 -- 比大小.md

文章目录 比大小1. 准备工作2. 功能实现3. 设计思路与实现(1)角色分析(2)背景分析(3)所用积木块介绍a. 运动类b. 外观类c. 事件类d. 控制类e. 运算类f. 变量类 (4)角色、舞台背景设置…...

Kali-linux使用Nessus

Nessus号称是世界上最流行的漏洞扫描程序,全世界有超过75000个组织在使用它。该工具提供完整的电脑漏洞扫描服务,并随时更新其漏洞数据库。Nessus不同于传统的漏洞扫描软件,Nessus可同时在本机或远端上遥控,进行系统的漏洞分析扫描…...

青训营 x 训练营结营测试题目(前端方向)

文章目录 📋前言🎯选择题(含多选)📝最后 📋前言 这篇文章的内容是23年6月青训营 x 训练营结营题目,题目一共有25题,题目类型为选择题,包括了单选题和多选题,…...

虚拟化技术介绍-VMware和Docker的区别

都说今天是一个云时代,其实云的本质就是由基础架构提供商提供基础架构,应用开发商不再关心基础架构。我们可以类比人类刚刚发明电的时候,工厂需要自己建电站,而现在只需要电线和插座就可以使用电。云时代让我们可以在分钟、甚至秒…...

TinyHttpd 运行过程出现的问题

最近拉了个 TinyHttpd 的工程下来,不过好像各个都有些改动,最后挑了篇阅读量最多的。工程也是从这里面给的链接下载的。 参考自:https://blog.csdn.net/jcjc918/article/details/42129311 拿下来在编译运行前,按这里说的&#x…...

【Linux】shell编程—数组

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、shell数组1,数组的概念2.数组的定义 二、Shell数组操作1. 获取数组的所有元素的列表2. 获取数组的所有元素下标3.取数组的元素个数4. 获取数组的某个元素的值5.…...

Maven仓库与Maven插件

目录 Maven 仓库 本地仓库 中央仓库 远程仓库 Maven 依赖搜索顺序 Maven 阿里云(Aliyun)仓库 gradle 配置指南 Maven 插件 插件类型 实例 Maven 仓库 在 Maven 的术语中,仓库是一个位置(place)。 Maven 仓库是项目中依赖的第三方库…...

【溯源反制】CDN域前置云函数-流量分析|溯源

文章目录 CDN隐藏C2地址环境搭建上传至威胁感知平台直接分析使用DNSQuerySniffer和Process Monitor定位进程网络流量分析文件属性(IDAPro Ollydbg) 域前置隐藏环境搭建威胁感知流量分析 云服务API网关/云函数云函数使用HTTPcs的流量可以简单的分为三个阶段 云函数使用HTTPS 总结…...

【Vue】学习笔记-全局事件总线

全局事件总线(GlobalEventBus) 一种可以在任意组件通信的方式,本质上就是一个对象,它必须满足以下条件 所有的组件对象都必须能看见他这个对象必须能够使用$ on $ emit $ off方法取绑定、触发和解绑事件 使用步骤 定义全局事件总线 //创建VUE new V…...

MATLAB数值运算(六)

目录 实验目的 实验内容 原创代码,仅供参考,不要直接CV呀 ~_~ 实验目的 1)掌握定义符号对象和创建符号表达式的方法; 2)掌握符号运算基本命令和规则; 3)掌握符号表达式的运算法则以及符号矩阵…...

某医院Pad网络故障分析

分析背景 某医院为了加强信息安全管理,防止病人隐私信息泄露,采用部署“零信任”安全架构设计理念的企业移动安全支撑平台方案。 但在部署前期测试时,遇到了严重的性能问题。 在本次测试环境中,通过PAD访问患者转运业务&#x…...

git 撤销中间某次提交,保留其他提交的方法

今天上班脑抽了,吧test直接合到了uat,因为项目近期就我一个人开发,自己拉个三个分支再改不同的东西,最后都是发到test分支发测试,发生产的时候一个个和嫌麻烦,直接吧test分支怼到了uat,结果生产就出问题了&…...

空中下载技术(OTA)电控信息安全

随着汽车电子控制系统功能复杂度和数据颗粒度呈阶梯式增加,其发展速度逐渐超越网络安全防护方法、技术和标准的发展,现阶段汽车电子正面临巨大的网络信息安全风险,对功能安全的潜在影响也仍在探索和解决中,信息安全问题已经成为影…...

数据库sql语句(count(*)和count(字段))

例题: 创建如下两张表 分别命名为books和persons (1)按照书名,姓名的顺序列出字里包含‘德’字的人物的姓名,书名和字。 select name 姓名,bookname 书名,style 字 from books,persons where style like %德% and bo…...

短视频矩阵源码系统

短视频矩阵源码系统开发要则: 1. 需求分析:对短视频平台的需求进行全面分析,确立系统开发目标和方向。 2. 技术选型:选用最适合的技术开发短视频矩阵系统,如前端框架、数据库、服务器等。 3. 系统设计:按…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...

【位运算】消失的两个数字(hard)

消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求&#xff…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...