当前位置: 首页 > news >正文

leetcode707 设计链表 带有输入和输出的

题目: 设计链表的实现。您可以选择使用单链表或双链表。单链表中的节点应该具有两个属性:val 和 next。val 是当前节点的值,next 是指向下一个节点的指针/引用。如果要使用双向链表,则还需要一个属性 prev 以指示链表中的上一个节点。假设链表中的所有节点都是 0-index 的。

在链表类中实现这些功能:

  • get(index):获取链表中第 index 个节点的值。如果索引无效,则返回-1。
  • addAtHead(val):在链表的第一个元素之前添加一个值为 val 的节点。插入后,新节点将成为链表的第一个节点。
  • addAtTail(val):将值为 val 的节点追加到链表的最后一个元素。
  • addAtIndex(index,val):在链表中的第 index 个节点之前添加值为 val 的节点。如果 index 等于链表的长度,则该节点将附加到链表的末尾。如果 index 大于链表长度,则不会插入节点。如果index小于0,则在头部插入节点。
  • deleteAtIndex(index):如果索引 index 有效,则删除链表中的第 index 个节点。

示例:

MyLinkedList linkedList = new MyLinkedList();
linkedList.addAtHead(1);
linkedList.addAtTail(3);
linkedList.addAtIndex(1,2); //链表变为1-> 2-> 3
linkedList.get(1); //返回2
linkedList.deleteAtIndex(1); //现在链表是1-> 3
linkedList.get(1); //返回3

思路:创建MyLinkedList 类,在类中创建ListNode 结构体,结构体中创建两个成员变量,并创建初始化的构造函数,创建成员变量size和哨兵节点,在MyLinkedList构造函数中初始化size和哨兵节点,在删除元素时,应该找到删除索引位置的前一个位置,再删除元素。
代码

#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
using namespace std;
class MyLinkedList {
public://定义链表结点结构体struct ListNode {int val;//结构体的成员变量:整数类型的valListNode* next;//结构体的成员变量:指向另一个ListNode对象的指针next//用于初始化节点的值和指向下一个节点的指针,这个构造函数在创建新结点时被调用,// 从而避免了在创建新节点后手动初始化节点的值和指针ListNode(int val) :val(val), next(nullptr) {}};//初始化链表MyLinkedList() {_size = 0;//初始化为一个ListNode对象,并且该节点的val成员变量被设置为0//用于表示虚拟头节点的默认值_dummyHead = new ListNode(0);}//使用尾插法先插入元素void addAtTail(int val) {//创建一个新节点ListNode* newNode = new ListNode(val);//从虚拟头节点开始遍历,找到链表的最后一个节点ListNode* curr = _dummyHead;while (curr->next) {curr = curr->next;}curr->next = newNode;_size++;//更新链表的大小}//获取到第index个节点数值,如果index是非法数值直接返回-1, //注意index是从0开始的,第0个节点就是头结点int get(int index) {if (index>_size-1||_size<0) {return -1;}ListNode* cur = _dummyHead->next;while (index) { cur = cur->next;index--;}return cur->val;}//在链表最前面插入一个节点,插入完成后,新插入的节点为链表的新的头节点void addAtHead(int val) {ListNode* NewNode = new ListNode(val);NewNode->next = _dummyHead->next;_dummyHead->next = NewNode;_size++;}// 在第index个节点之前插入一个新节点,例如index为0,// 那么新插入的节点为链表的新头节点。// 如果index 等于链表的长度,则说明是新插入的节点为链表的尾结点// 如果index大于链表的长度,则返回空// 如果index小于0,则在头部插入节点void addAtIndex(int index,int val) {if (index > _size)return;if (index < 0)index = 0;ListNode* newNode = new ListNode(val);ListNode* cur = _dummyHead;while (index) {cur = cur->next;index--;}newNode->next = cur->next;cur->next = newNode;_size++;}// 删除第index个节点,如果index 大于等于链表的长度,直接return,//注意index是从0开始的void deleteAtIndex(int index) {if (index >= _size||index<0)return;ListNode* cur = _dummyHead;while (index) {cur = cur->next;index--;}ListNode* tmp = cur->next;cur->next = cur->next->next;delete tmp;_size--;}void printl() {ListNode* cur = _dummyHead->next;while (cur) {cout << cur->val << "->";cur = cur->next;}cout << "NULL" << endl;cout <<"总元素个数为:" << _size;}
private:int _size;ListNode* _dummyHead;
};
int main() {MyLinkedList linkedList;linkedList.addAtTail(100);linkedList.addAtTail(200);linkedList.addAtTail(300);linkedList.addAtHead(66);linkedList.addAtIndex(1, 88);linkedList.deleteAtIndex(3);linkedList.printl();return 0;
}

相关文章:

leetcode707 设计链表 带有输入和输出的

题目&#xff1a; 设计链表的实现。您可以选择使用单链表或双链表。单链表中的节点应该具有两个属性&#xff1a;val 和 next。val 是当前节点的值&#xff0c;next 是指向下一个节点的指针/引用。如果要使用双向链表&#xff0c;则还需要一个属性 prev 以指示链表中的上一个节…...

100种思维模型之非sr思维模型-012

什么是sr? sr是stimulus-response的缩写&#xff0c;意思是刺激反应。 那么非sr思维模型就是非刺激反应思维模型的意思。 今天我们来聊聊非sr思维模型——一个提醒我们思考&#xff0c;提醒我们任何时刻都有选择权的思维模型。 本文依然从三个方面进行介绍&#xff0c;何谓…...

绿竹生物再冲刺港交所上市:暂未商业化,孔健夫妇为实控人

近日&#xff0c;北京绿竹生物技术股份有限公司&#xff08;下称“绿竹生物”&#xff09;在港交所递交招股书&#xff0c;准备在港交所主板上市&#xff0c;中金公司为其独家保荐人。据贝多财经了解&#xff0c;绿竹生物曾于2022年6月28日在港交所递表。 相较于此前招股书&am…...

加拿大MSB金融牌照申请方案

什么是加拿大MSB金融牌照&#xff1f; 根据犯罪所得&#xff08;洗钱&#xff09;和恐怖主义融资法案&#xff0c;您的企业必须在加拿大金融交易和报告分析中心 (FINTRAC) 注册成为货币服务企业。自 2020 年 6 月 1 日起&#xff0c;外国货币服务企业也必须在 FINTRAC 注册&…...

javaEE 初阶 — 滑动窗口

文章目录滑动窗口1 滑动窗口下如何处理丢包TCP 工作机制&#xff1a;确认应答机制 超时重传机制 连接管理机制 滑动窗口 确认应答机制、超时重传机制、连接管理机制 都是给 TCP 的可靠性提供支持的。 虽然事变的比较可靠了&#xff0c;但是是有牺牲的&#xff0c;那就是传输…...

大咖说·图书分享|狼书(卷3):Node.js高级技术

Node.js都有哪些需要掌握的高级技术&#xff1f;前端为什么同样需要学习&#xff1f; Node.js未来的发展趋势究竟如何&#xff1f;本期大咖说&#xff0c;Node布道师桑世龙携新作《狼书(卷3)&#xff1a;Node.js高级技术》展开分享。 ● 嘉宾介绍 桑世龙&#xff1a;Node布道…...

1.5配置NBMA和P2MP网络类型

1.3.3实验5:配置NBMA和P2MP网络类型 1. 实验需求 控制OSPF DR的选举修改OSPF的网络类型2. 实验拓扑 配置NBMA和P2MP网络类型实验拓扑如图1-13所示。 图1-13 配置NBMA和P2MP网络类型 3. 实验步骤 帧中继的配置如图1-14和图1-15所示...

Java面试题

三次握手&#xff0c;四次挥手中&#xff0c;为什么要挥手四次 第一次握手&#xff0c;客户端发送同步报文到服务端&#xff0c;客户端知道自己有发送数据能力&#xff0c;不知道服务端是否有发送、接受数据能力。 第二次握手&#xff0c;服务端收到同步报文&#xff0c;并回复…...

opencv锁定鼠标定位

大家好&#xff0c;我是csdn的博主&#xff1a;lqj_本人 这是我的个人博客主页&#xff1a; lqj_本人的博客_CSDN博客-微信小程序,前端,python领域博主lqj_本人擅长微信小程序,前端,python,等方面的知识https://blog.csdn.net/lbcyllqj?spm1011.2415.3001.5343哔哩哔哩欢迎关注…...

机器连接和边缘计算

以一种高效、可扩展的方式进行连接和边缘计算的结合&#xff0c;解决了在工业物联网应用中的机器数据集成问题。 一 边缘计算 边缘计算描述了由中央平台管理的数据分散式处理。边缘计算对于工业物联网而言非常重要。在许多应用程序中&#xff0c;由于数据量非常大&#xff0c;…...

利用NGROK将本地网站发布为一个公开网站

一般与第三方服务集成时&#xff0c;需要提供https的回调URL&#xff0c;本地开发阶段可以利用NGROK将本地网站发布为公开的https网站。https://ngrok.com/downloadWindow下载地址&#xff1a;https://bin.equinox.io/c/bNyj1mQVY4c/ngrok-v3-stable-windows-amd64.zip以Window…...

Vulnhub 渗透练习(一)—— Breach 1.0

环境搭建 环境下载&#xff1a; https://www.vulnhub.com/entry/breach-1,152/ 环境描述&#xff1a; Vulnhub 中对此环境的描述&#xff1a; VM 配置有静态 IP 地址 (192.168.110.140)&#xff0c;因此您需要将仅主机适配器配置到该子网。 这里我用的是 VMware &#xff0…...

初探Spring采用Spring配置文件管理Bean

文章目录Spring容器演示--采用Spring配置文件管理Bean&#xff08;一&#xff09;创建Maven项目&#xff08;二&#xff09;添加Spring依赖&#xff08;三&#xff09;创建杀龙任务类&#xff08;四&#xff09;创建勇敢骑士类&#xff08;五&#xff09;采用传统方式让勇敢骑士…...

【手写 Vuex 源码】第十二篇 - Vuex 插件机制的实现

一&#xff0c;前言 上一篇&#xff0c;主要介绍了 Vuex 插件的开发&#xff0c;主要涉及以下几个点&#xff1a; Vuex 插件的使用介绍&#xff1b;Vuex 插件开发和使用分析&#xff1b;Vuex 插件机制的分析&#xff1b; 本篇&#xff0c;继续介绍 Vuex 插件机制的实现&…...

图像去噪技术简述

随着每天拍摄的数字图像数量激增&#xff0c;对更准确、更美观的图像的需求也在增加。然而&#xff0c;现代相机拍摄的图像不可避免地会受到噪声的影响&#xff0c;从而导致视觉图像质量下降。因此&#xff0c;需要在不丢失图像特征&#xff08;边缘、角和其他尖锐结构&#xf…...

数据迁移——技术选型

日常我们在开发中&#xff0c;随着业务需求的变更&#xff0c;重构系统是很常见的事情。重构系统常见的一个场景是变更底层数据模型与存储结构。这种情况下就要对数据进行迁移&#xff0c;从而使业务能正常支行。 背景如下&#xff1a;老系统中使用了mongo数据库&#xff0c;由…...

第二十七章 java并发常见知识内容(CompletableFuture)

JAVA重要知识点CompletableFuture常见函数式编程操作创建 CompletableFuture静态工厂方法处理异步结算的结果异常处理组合 CompletableFuturethenCompose() 和 thenCombine() 区别并行运行多个 CompletableFutureCompletableFuture Java 8 才被引入的一个非常有用的用于异步编…...

Qt扫盲-QMake 使用概述

QMake 使用概述一、概述二、简单开始三、使应用程序可调试1. 添加平台特定的源文件2. 如果文件不存在&#xff0c;停止qmake3. 检查多个条件一、概述 本教程教你qmake的基础知识。qmake 其实就是一个自动化编译的流程控制文件&#xff0c;也是Qt程序的生成makefile的工具&…...

Spring Cloud之Zuul

目录 简介 Zuul中的过滤器 过滤器的执行流程 使用过滤器 route过滤器的默认三种配置 路由到服务 路由到url地址 转发给自己 自定义过滤器 简介 Zuul是Netflix开源的微服务网关&#xff0c;主要功能是路由转发和过滤器&#xff0c;其原理也是一系列filters&#xff0…...

为什么要有分布式锁?

Redis避坑指南&#xff1a;为什么要有分布式锁&#xff1f;作者&#xff1a;京东保险 张江涛1、为什么要有分布式锁&#xff1f;JUC提供的锁机制&#xff0c;可以保证在同一个JVM进程中同一时刻只有一个线程执行操作逻辑&#xff1b;多服务多节点的情况下&#xff0c;就意味着有…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...