当前位置: 首页 > news >正文

matlab小波去噪

本文将为您介绍如何利用MATLAB进行小波去噪处理,并应用于实际数据。小波去噪是一种通过对数据进行小波分解和重构的方法,有效地去除信号中的噪声,提高信号质量。该方法不仅广泛应用于信号处理、图像处理等领域,在实际生产和科研中也有广泛的应用。

本文将从以下几个方面进行介绍:

  1. 小波去噪的基本理论

  2. MATLAB中的小波去噪算法

  3. 原始数据噪声处理案例

  4. 小波去噪的基本理论

小波去噪是一种基于小波分析和重构的信号处理方法。其基本思想是将噪声信号分解为多个尺度的子信号,然后根据信噪比确定不同尺度子信号中的噪声,进而构造出不同尺度下的小波阈值函数,以压缩高频子带的系数,从而达到去噪的目的。

小波阈值处理的基本流程如下:

首先将原始信号 x x x分解为 N N N个子带:

x = ∑ n = 1 N a n + d n x=\sum_{n=1}^{N}a_{n}+d_{n} x=n=1Nan+dn

其中 a n a_{n} an是近似子带, d n d_{n} dn是细节子带。然后利用固定的阈值规则选出需阈值化的系数,例如Hard Thresholding和Soft Thresholding。最后将阈值化后的系数,按原系数的正负号加权重构得到去噪后的信号。

  1. MATLAB中的小波去噪算法

MATLAB是一个强大的数据处理和计算工具,内置许多信号处理的算法包括小波分析和小波去噪。使用MATLAB进行小波去噪处理的基本步骤如下:

(1)将原始数据读入Matlab

load signal.mat

(2)对数据进行小波分解

[C, L] = wavedec(data, 5, 'db4');

其中,wavedec函数是MATLAB中用于进行小波分解的函数,data是原始数据,5表示分解到5层,db4是小波基函数类型。

(3) 小波阈值处理

thr = wthrmngr('dw2dcomp', 'penalhi', C, L, 1);
sorh = 's';
[C_T, L_T, perf0, perfl2] = wdencmp('gbl', C, L, 'sym4', 5, thr, sorh);

wthrmngr函数和wdencmp函数是MATLAB用于进行小波阈值处理的函数,其对应的参数可以通过调整来优化去噪效果。其中,thr是设置的阈值,sorh表示Hard Thresholding还是Soft Thresholding,‘gbl’是全局阈值,‘sym4’是小波基函数的类型,5表示进行5层分解。

(4) 重构得到去噪信号

data_denoise = waverec(C_T, L_T, 'db4');

其中,waverec是用于对小波分解系数进行重构的函数,db4是小波基类型。

  1. 原始数据噪声处理案例

现以某船舶结构振动数据为例进行讲解,数据为64个通道,采样频率10kHz,采集时间5.5秒。如下图所示:

图1:原始数据示意图

根据上述步骤使用MATLAB进行小波去噪处理,优化参数后得到的去噪图像如下:

图2:去噪数据示意图

经过小波去噪处理,图像噪声明显降低,保留了数据本来的特征。去噪处理后的数据对于船舶结构振动检测和预测具有很重要的意义。

以上就是本文的全部内容,希望能够帮助您了解MATLAB中的小波去噪算法及其在实际数据处理中的应用。

相关文章:

matlab小波去噪

本文将为您介绍如何利用MATLAB进行小波去噪处理,并应用于实际数据。小波去噪是一种通过对数据进行小波分解和重构的方法,有效地去除信号中的噪声,提高信号质量。该方法不仅广泛应用于信号处理、图像处理等领域,在实际生产和科研中…...

为什么要采用全网营销策略?全网营销有何优势?

现在市场上有很多全网营销公司,其实很多企业的经理人疑惑全网营销是要干什么?这些公司能干什么?这里小马识途营销顾问给大家做一个整体的解读。 全网营销,概括地说就是在整个互联网,利用各类互联网平台和工具对产品和服…...

prometheus实战之四:alertmanager的部署和配置

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是《prometheus实战》系列的第四篇,在《prometheus实战之三:告警规则》中曾经提到过,整个告警功能分为规则和…...

【Python】glob 包的介绍和使用

glob 是 Python 标准库中的一个模块,它提供了一种查找符合特定模式的路径名的方法,类似于命令行中的 glob 命令。glob 模块用于读取指定路径下的所有符合特定规律的文件名,非常适合用于读取文件夹中的文件列表和操作符合特定规律文件列表。 …...

剑指offer(C++)-JZ48:最长不含重复字符的子字符串(算法-动态规划)

作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 题目描述: 请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子字符串的长度。 数据范围…...

两阶段最小二乘法

两阶段最小二乘法 文章目录 两阶段最小二乘法[toc]1、ivreg包介绍2 、R语言实现 1、ivreg包介绍 R语言计量包ivreg用以解决线性回归模型的内生性问题。 描述:工具变量估计的线性模型通过两阶段最小二乘(2SLS) 回归或通过稳健回归M估计(2SM)或MM估计(2SMM)。主要的…...

ArcMap创建格网统计图

目录 前言 一、人口数据获取 来源一:中科院地理所公开数据集 来源二:WorldPop数据集 二、人口格网统计步骤 1.创建渔网 2.人口数据处理 2.1 栅格转点 2.2 空间插值——处理人口缺失数据 2.3 空间连接——渔网人口统计 总结 前言 在科研中&am…...

[VAE] Auto-Encoding Variational Bayes

直接看paper看得云里雾里,李沐视频一语道破天机(建议从30min左右开始看GAN到Diffusion的串讲)。VAE的核心思路就是下面: 做生成,其实就是从随机向量(z)到目标图像(x)的过…...

《程序员面试金典(第6版)》面试题 16.19. 水域大小(深度优先搜索,类似棋盘类问题,八皇后的简化版本,C++)

题目描述 你有一个用于表示一片土地的整数矩阵land,该矩阵中每个点的值代表对应地点的海拔高度。若值为0则表示水域。由垂直、水平或对角连接的水域为池塘。池塘的大小是指相连接的水域的个数。编写一个方法来计算矩阵中所有池塘的大小,返回值需要从小到…...

Spring 注解之@RestController与@Controller的区别

目录 1:介绍 2:区别 3:总体来说 4:社区地址 1:介绍 RestController 和 Controller 是 Spring MVC 中常用的两个注解,它们都可以用于定义一个控制器类。 2:区别 返回值类型不同:…...

Java中的泛型是什么?如何使用泛型

Java中的泛型是指在定义类、接口和方法时使用类型参数,以使得这些类、接口和方法可以操作多种类型的数据,从而提高代码的重用性和安全性。Java的泛型机制是从JDK5开始引入的,它使得Java程序员能够编写更加通用和类型安全的代码。 什么是泛型…...

【飞行棋】多人游戏-微信小程序开发流程详解

可曾记得小时候玩过的飞行棋游戏,是90后的都有玩过吧,现在重温一下,这是一个可以二到四个人参与的游戏,通过投骰子走棋,一开始靠运气,后面还靠自己选择,谁抢占先机才能赢,还可以和小…...

力扣 146. LRU 缓存

一、题目描述 请你设计并实现一个满足LRU(最近最少使用)缓存约束的数据结构。 实现 LRUCache 类: LRUCache(int capacity) 以正整数作为容量 capacity 初始化LRU缓存。int get(int key) 如果关键字 key 存在于缓存中,则返回关键…...

关于Oracle SCN的最大阈值

SCN每秒增长的速度跟Oracle的版本有关,在Oracle 11.2.0.2之前是每秒允许最大增长16384,在Oracle 11.2.0.2之后是默认每秒允许增长32768,这个值跟新增的隐含参数_max_reasonable_scn_rate有关,如下所示: NAME …...

Linux多路转接之poll

文章目录 一、poll的认识二、编写poll方案服务器三、poll方案多路转接的总结 一、poll的认识 多路转接技术是在不断更新进步的,一开始多路转接采用的是select方案,但是select方案存在的缺点比较多,所以在此基础上改进,产生了poll…...

Webpack打包流程

轻松了解Webpack 打包流程 Webpack是一个现代的JavaScript应用程序的静态模块打包器。它将多个JavaScript文件打包成一个或多个静态资源文件,以便在浏览器中加载。Webpack将应用程序视为一个依赖项图,其中包括应用程序的所有模块,然后通过该…...

React事件委托

React 事件委托(Event Delegation)是一种优化事件处理的技术,它通过将事件监听器添加到父级元素(而不是子元素)来实现。当事件触发时,事件会向上冒泡到父元素,然后在父元素上调用事件处理函数。…...

Notion——构建个人知识库

前言 使用Notion快三年了,它All in one的理念在使用以后确实深有体会,一直想找一个契机将这个软件分享给大家,这款笔记软件在网上已经有很多的教程了,所以在这里我主要想分享框架方面的内容给大家,特别对于学生党、研究…...

ModuleNotFoundError: No module named ‘Multiscaledeformableattention‘

在实现DINO Detection方法时,我们可能会遇到以上问题。因为在DeformableAttention模块,为了加速,需要自己去编译这个模块。 如果你的环境变量中能够找到cuda路径,使用正确的torch版本和cuda版本的话,这个问题很容易解…...

【数据结构】链表(C语言实现)

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c语言系列专栏&#xff1a;c语言之路重点知识整合 &#x…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...