当前位置: 首页 > news >正文

YOLO V3 SPP ultralytics 第二节:根据yolo的数据集,生成准备文件和yolo的配置文件

目录

1.  介绍

2. 完整代码

3. 代码讲解

3.1 生成 my_train_data.txt和my_val_data.txt

3.2 生成 my_data.data 文件

3.3  生成 my_yolov3.cfg

3.4 关于my_data_label.names文件


1.  介绍

根据 第一节 的操作,已经生成了下图中圆圈中的部分,而本章的内容就是通过代码生成矩形框中的部分,为后面的工作做准备

  • my_yolov3.cfg 是将官方的yolov3-spp.cfg 网络的配置文件根据自定义的数据集修改得到的自己的网络配置(因为检测的分类个数不同,yolo输出的信息也会不同
  • my_train_data.txt 和 my_val_data.txt 是训练集 / 验证集中,所有图片的完整路径,也就是my_yolo_dataset 中 两个 images 下面的所有图片的路径
  • my_data.data 是分类个数、my_train_data.txt 和 my_val_data.txt这两个文件的路径、以及my_data_label.names 的路径(如果,一开始数据集就是yolo格式的,就不会经过第一节的操作,也不会生成这个.names文件,所以要自己建立

 

2. 完整代码

实现代码为 calculate_dataset.py

"""
该脚本有3个功能:
1.统计训练集和验证集的数据并生成相应.txt文件
2.创建my_data.data文件,记录目标检测的 classes个数, train以及 val数据集文件(.txt)路径和 label.names文件路径
3.根据 yolov3-spp.cfg创建 my_yolov3.cfg文件修改其中的 predictor filters以及 yolo classes参数(这两个参数是根据类别数改变的)
"""
import os# 生成训练集、验证集的所有数据路径文件
def calculate_data_txt(txt_path, dataset_dir):with open(txt_path, "w") as w:for file_name in os.listdir(dataset_dir):       # 遍历数据的标注文件train、val下的labelsif file_name == "classes.txt":continue# 根据标注文件找到对应的图片,图片后缀需要是jpgimg_path = os.path.join(dataset_dir.replace("labels", "images"),file_name.split(".")[0]) + ".jpg"line = img_path + "\n"      # 写入一个数据路径就换行assert os.path.exists(img_path), "file:{} not exist!".format(img_path)w.write(line)# 创建data.data文件,记录分类类别个数、训练集、验证集、分类类别的文件路径
def create_data_data(create_data_path, train_path, val_path, classes_info):with open(create_data_path, "w") as w:w.write("classes={}".format(len(classes_info)) + "\n")  # 记录类别个数w.write("train={}".format(train_path) + "\n")           # 记录训练集对应txt文件路径w.write("valid={}".format(val_path) + "\n")             # 记录验证集对应txt文件路径w.write("names=data/my_data_label.names" + "\n")        # 记录label.names文件路径# 创建yolo v3 spp的配置信息
def change_and_create_cfg_file(classes_info, save_cfg_path="./cfg/my_yolov3.cfg"):filters_lines = [636, 722, 809]classes_lines = [643, 729, 816]cfg_lines = open(cfg_path, "r").readlines()for i in filters_lines:assert "filters" in cfg_lines[i-1], "filters param is not in line:{}".format(i-1)output_num = (5 + len(classes_info)) * 3    # (x,y,w,h+置信度 + 类别的个数) * 每一个cell生成 3 个预测框cfg_lines[i-1] = "filters={}\n".format(output_num)for i in classes_lines:assert "classes" in cfg_lines[i-1], "classes param is not in line:{}".format(i-1)cfg_lines[i-1] = "classes={}\n".format(len(classes_info))with open(save_cfg_path, "w") as w:w.writelines(cfg_lines)def main():# 统计训练集和验证集的数据并生成相应 txt文件train_txt_path = "data/my_train_data.txt"val_txt_path = "data/my_val_data.txt"calculate_data_txt(train_txt_path, train_annotation_dir)        # 所有训练集的路径calculate_data_txt(val_txt_path, val_annotation_dir)            # 所有验证集的路径# 获取检测的所有类别classes_info = [line.strip() for line in open(classes_label, "r").readlines() if len(line.strip()) > 0]# 创建data.data文件,记录classes个数, train以及val数据集文件(.txt)路径和 label.names文件路径create_data_data("./data/my_data.data", train_txt_path, val_txt_path, classes_info)# 根据yolov3-spp.cfg创建my_yolov3.cfg文件修改其中的predictor filters以及yolo classes参数(这两个参数是根据类别数改变的)change_and_create_cfg_file(classes_info)if __name__ == '__main__':train_annotation_dir = "./my_yolo_dataset/train/labels"             # 训练集的标注文件val_annotation_dir = "./my_yolo_dataset/val/labels"                 # 验证集的标注文件classes_label = "./data/my_data_label.names"                        # 检测的分类labelcfg_path = "./cfg/yolov3-spp.cfg"                                   # 官方的yolov3-spp 的配置文件assert os.path.exists(train_annotation_dir), "train_annotation_dir not exist!"assert os.path.exists(val_annotation_dir), "val_annotation_dir not exist!"assert os.path.exists(classes_label), "classes_label not exist!"assert os.path.exists(cfg_path), "cfg_path not exist!"main()

3. 代码讲解

代码有些部分自己又加了些注释,这里会挑着讲解

首先将相关路径设定好

3.1 生成 my_train_data.txt和my_val_data.txt

 

然后生成数据集图片的路径,这里训练集和测试集一样,只讲解训练集

对于训练集来说,写入my_train_data.txt 文件。

 其中,file_name 就是labels 下面文件名,因为这里文件名就是图片的名称。通过路径替换就能、后缀替换就可以找到images所有的图片完整路径,写入my_train_data.txt 文件即可

生成的my_train_data.txt 和my_val_data.txt 如下:

 

3.2 生成 my_data.data 文件

代码如下

 

其中,classes_info 信息如下:['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] ,其实就是分类的名称

然后,进入create_data_data 函数内部,将对应的文件路径写入即可

 

my_data.data 文件

3.3  生成 my_yolov3.cfg

因为不同检测任务的分类个数可能不同,因此需要更改yolo的配置信息

 

实现的方式如下:

因为yolo输出是三个尺度的,而 filters_lines = [636, 722, 809] classes_lines = [643, 729, 816]就是对应三个尺度的信息。除了检测的类别更改自定义数据集的类别个数外。预测框输出的tensor也和类别有关

 

如下,官方的classes 是coco所以是80类别。这里使用的是pascal voc 所以是20类别

75 = (x、y、w、h+置信度 + 类别个数)* 3(每一个cell生成3个预测框)  = 25 * 3

官方是  (5 + 80)*3 = 255

 

3.4 关于my_data_label.names文件

如果本身就是yolo 数据集的话,是不需要进行第一节的操作的

那么这个文件my_data_label.names是不存在的,需要手工建立,如下:

只需要更改文件名就行了

 

相关文章:

YOLO V3 SPP ultralytics 第二节:根据yolo的数据集,生成准备文件和yolo的配置文件

目录 1. 介绍 2. 完整代码 3. 代码讲解 3.1 生成 my_train_data.txt和my_val_data.txt 3.2 生成 my_data.data 文件 3.3 生成 my_yolov3.cfg 3.4 关于my_data_label.names文件 1. 介绍 根据 第一节 的操作,已经生成了下图中圆圈中的部分,而本…...

camunda流程引擎connector如何使用

在 Camunda 中,Connector 是一种用于与外部系统或服务交互的机制。它允许 BPMN 模型中的 Service Task 节点与外部系统或服务进行通信,从而使流程更加灵活和可扩展。使用 Connector,可以将业务流程与外部系统集成在一起,而无需编写…...

ECO基本概念:pre-mask eco gen patch flow

使用conformal LEC 进行pre-mask eco 时,如何产生patch,参考以下步骤: 官方推荐 Flattened ECO Flow(FEF) Conformal支持Flattened ECO Flow和Hierarchical ECO Flow。Flattened下,工具会将 ECO 分析重点…...

【初学人工智能原理】【4】梯度下降和反向传播:能改(下)

前言 本文教程均来自b站【小白也能听懂的人工智能原理】,感兴趣的可自行到b站观看。 本文【原文】章节来自课程的对白,由于缺少图片可能无法理解,故放到了最后,建议直接看代码(代码放到了前面)。 代码实…...

微信小程序路由传参

微信小程序路由传参 在微信小程序中,可以通过路由传参将数据传递给目标页面。以下是一种常见的方式: 在源页面中,使用 wx.navigateTo 或 wx.redirectTo 方法跳转到目标页面,并通过 URL 参数传递数据。示例: wx.navi…...

深入篇【C++】类与对象:再谈构造函数之初始化列表与explicit关键字

深入篇【C】类与对象&#xff1a;再谈构造函数之初始化列表与explicit关键字 Ⅰ.再谈构造函数①.构造函数体赋值②.初始化列表赋值【<特性分析>】1.至多性2.特殊成员必在性3.必走性&#xff1a;定义位置4.一致性5.不足性 Ⅱ.explicit关键字①.隐式类型转化②.作用 Ⅰ.再谈…...

广东棒球发展建设·棒球1号位

一、概述 棒球是一项源于美国的运动&#xff0c;自20世纪初开始传入中国&#xff0c;近年来在广东省的发展也逐渐受到关注。本文将就广东棒球的发展现状及未来发展方向进行分析。 二、发展现状 目前广东省内棒球赛事主要有以下几种&#xff1a; 1. 业余棒球联赛&#xff1a;…...

浅谈PMO对组织战略的支持︱美团骑行事业部项目管理中心负责人边国华

美团骑行事业部项目管理中心负责人边国华先生受邀为由PMO评论主办的2023第十二届中国PMO大会演讲嘉宾&#xff0c;演讲议题&#xff1a;浅谈PMO对组织战略的支持。大会将于6月17-18日在北京举办&#xff0c;更多内容请浏览会议日程 议题内容简要&#xff1a; 战略是组织运行的…...

互联网医院资质代办|互联网医院牌照的申请流程

随着互联网技术的不断发展&#xff0c;互联网医疗已经逐渐成为人们关注的热点话题。而互联网医院作为互联网医疗的一种重要形式&#xff0c;也越来越受到社会各界的关注。若想开展互联网医院业务&#xff0c;则需要具备互联网医院牌照。那么互联网医院牌照的申请流程和需要的资…...

网络:DPDK复习相关知识点_2

1.RTC运行至完成时模式&#xff0c;单核单模块 2.pipeline模式&#xff0c;多核多模块&#xff0c;每个模块都是一个处理引擎&#xff0c;但会有缓存一致性问题 3.Mbuff数据包内存操作对象&#xff0c;相当于是数据包的一个索引&#xff0c;对网络的处理都集中在这个Buff上 …...

阿里云大学考试Java中级题目及解析-java中级

阿里云大学考试Java中级题目及解析 1.servlet释放资源的方法是&#xff1f; A.int()方法 B.service()方法 C.close() 方法 D.destroy()方法 D servlet释放资源的方法是destroy() 2.order by与 group by的区别&#xff1f; A.order by用于排序&#xff0c;group by用于排序…...

【星戈瑞】Sulfo-CY3-COOH磺化/水溶性Cyanine3羧酸1121756-11-3

Sulfo-CY3 COOH是一种荧光染料&#xff0c;其分子结构中含有COOH官能团&#xff0c;最大吸收波长为550纳米左右&#xff0c;可以通过分光光度计等设备进行检测。Sulfo-CY3 COOH是一种带有羧基的荧光染料&#xff0c;可以与含有氨基的生物分子通过偶联反应形成共价键&#xff0c…...

Java NIO和IO的主要区别

当学习了Java NIO和IO的API后&#xff0c;一个问题马上涌入脑海&#xff1a; 我应该何时使用IO&#xff0c;何时使用NIO呢&#xff1f;在本文中&#xff0c;我会尽量清晰地解析Java NIO和IO的差异、它们的使用场景&#xff0c;以及它们如何影响您的代码设计。 下表总结了Java N…...

SQL查询语句

DQL语句--排序查询 # 格式: select * from 表名 order by 要排序的列1 [asc/desc], 要排序的列2 [asc/desc]; # 解释: # 1. 无论SQL语句简单或者是复杂, order by语句一般都放最后, 注意: 如果有limit(分页), 则它(limit)在最后. # 2. asc表示升序, desc表示降序, 其中, 默…...

四象限法进程调度

周二收到一篇推送 一次云上网络毫秒级的优化与实践&#xff0c;很有意义的实践和探索&#xff0c;建议阅读&#xff0c;文章不长&#xff0c;没有冗长的源码分析&#xff0c;结论很清晰。 谈谈我的看法。 多少有种感觉&#xff0c;Linux 越来越像个响应系统而不是服务器。 虚…...

蓝桥杯拿到一等奖,并分享经验

昨天和群里的小伙伴在群里聊&#xff0c;有的小伙伴竟然说蓝桥杯一等奖没有含量&#xff0c;我也是醉了&#xff01; 就像去年看了一个号主写的&#xff1a;研究生遍地都是! 放眼全国14亿人口&#xff0c;别说研究生了&#xff0c;本科生占比有多少? “蓝桥杯是我人生中得到…...

vue3。 Cannot use JSX unless the ‘–jsx’ flag is provided. ts(17004)

react用tsx或者jsx很常见&#xff0c;也有配套的配置 那如果是vue呢&#xff1f; 默认是没问题的&#xff0c;可是我用了jsdoc&#xff0c;并开启了checkjs&#xff0c;然后vscode就爆红了 谷歌&#xff0c;百度&#xff0c;一个晚上 查到的答案&#xff1a; 推荐我新增tsco…...

HVV面试题目总结

蓝队 如何识别安全设备中的无效告警? 常见的端口有哪些? 这些端口对应的服务是什么? 针对这些服务&#xff0c;红队攻击方式有哪些? 常用的威胁情报平台有哪些? 有没有做过关于情报输出的工作? 木马驻留系统的方式有哪些? 当收到钓鱼邮件的时候&#xff0c;说说处置思路…...

Access denied for user ‘root‘@‘localhost‘ (using password:YES) 解决方案

文章目录 问题描述解决方案&#xff1a; 问题描述 Access denied for user ‘root’‘localhost’:拒绝用户’root’localhost’的访问。 出现这个报错语句的一般原因是输入了错误的密码&#xff0c;也有可能是是root帐户默认不开放远程访问权限。 相关的解决方法是重新设置…...

为什么C++这么复杂还不被淘汰?

C是一门广泛使用的编程语言&#xff0c;主要用于系统和应用程序的开发。尽管C具有一些复杂的语法和概念&#xff0c;但它仍然是编程界的重量级选手&#xff0c;在编程语言排行榜中一直位居前列。为什么C这么复杂还不被淘汰呢&#xff1f; C有以下优势 1、C具有高性能 C是一门编…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...