【C++】 排列与组合算法详解(进阶篇)
文章目录
- 写在前面
- 算法1:朴素算法
- 思路
- 缺点
- 算法2:递推预处理
- 算法3:阶乘逆元
- 算法4:Lucas 定理
写在前面
我上次发了一篇题解:C++排列与组合算法详解
最开始,我是抱着水题解的想法写的,但却成为了阅读量 最高 的文章,没有之一。
所以今天咱们来重制一篇文章,介绍几个进阶优化版的算法。
算法1:朴素算法
思路
具体见 C++排列与组合算法详解
缺点
不能将结果取模,因为朴素的组合公式在取模意义下没用。
算法2:递推预处理
思路
我们发现:
C a 0 = 1 C a b = C a − 1 b + C a − 1 b − 1 ( a , b > 0 ) C_a^0 = 1\\ C_a^b=C_{a-1}^b+C_{a-1}^{b-1}(a,b>0) Ca0=1Cab=Ca−1b+Ca−1b−1(a,b>0)
所以我们可以写一个递推函数(部分非主要内容已省略):
void init_C()
{for (int i = 0; i < N; i ++ ) // N 表示预处理最大的下标for (int j = 0; j <= i; j ++ )if (!j) c[i][j] = 1;else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % P;
}
再预处理阶乘:
void f(int n)
{f[0] = 1;for (int i = 1; i <= n; i ++ )f[i] = (LL)f[i - 1] * i % P;
}
需要排列的话还可以预处理排列:
void init_A(int n)
{for (int i = 0; i <= n; i ++ )for (int j = 0; j <= i; j ++ )a[i][j] = (LL)f[i - j] * c[i][j] % P;
}
时间复杂度: O ( n 2 ) O(n^2) O(n2)
可以处理 5000 5000 5000 以内规模的数据
算法3:阶乘逆元
思路
根据费马小定理可得,当 p p p 为质数时, a p − 1 ≡ 1 ( m o d p ) a^{p-1} \equiv 1\pmod p ap−1≡1(modp)
∴ a p − 2 ≡ 1 a ( m o d p ) \therefore a^{p-2} \equiv \frac{1}{a}\pmod p ∴ap−2≡a1(modp)
这就是乘法逆元,通常使用在需要除法取模的情况。
这里再次提一下排列、组合公式: C a b = a ! b ! ( a − b ) ! , A a b = a ! b ! C_a^b=\frac{a!}{b!(a-b)!},\ \ A_a^b=\frac{a!}{b!} Cab=b!(a−b)!a!, Aab=b!a!
求逆元需要用到快速幂:
LL qpow(LL a, LL b, LL p)
{LL res = 1;while (b){if (b & 1) res = res * a % p;b >>= 1;a = a * a % p;}return res;
}
然后预处理阶乘和阶乘逆元:
f[0] = uf[0] = 1;
for (int i = 1; i < N; i ++ )
{f[i] = (LL)f[i - 1] * i % mod;uf[i] = (LL)uf[i - 1] * qpow(i, mod - 2, mod) % mod;
}
同样的,如果输出排列、组合结果的话需要利用公式。
时间复杂度: O ( n log n ) O(n \log n) O(nlogn)
可以处理 1 0 5 10^5 105 以内规模的数据
思考:读者也可以尝试写 O ( n ) O(n) O(n) 预处理阶乘逆元。
算法4:Lucas 定理
思路
由 Lucas 定理可得:当 p p p 为质数时,
C a b = C a p b p × C a m o d p b m o d p \large{C_a^b=C_{\frac{a}{p}}^{\frac{b}{p}} \times C_{a \bmod p}^{b \bmod p}} Cab=Cpapb×Camodpbmodp
因此,我们可以写一个递归函数 LL lucas(int a, int b)
,递归出口是 a k < p , b k < p a_k<p, b_k<p ak<p,bk<p 。
递归的过程相当于自上向下将 C a 1 b 1 , C a 2 b 2 , … , C a k b k C_{a_1}^{b_1},C_{a_2}^{b_2},…,C_{a_k}^{b_k} Ca1b1,Ca2b2,…,Cakbk 添加到乘式里。
LL lucas(LL a, LL b)
{if (a < p && b < p) return C(a, b);return (LL)C(a % p, b % p) * lucas(a / p, b / p) % p;
}
这里面的 C(a, b)
是指 算法3 ,即用阶乘和阶乘逆元求组合数。
LL qpow(LL a, LL b, LL p)
{int res = 1;while (b){if (b & 1) res = res * a % p;b >>= 1;a = a * a % p;}return res;
}LL C(LL a, LL b)
{LL res = 1;for (int i = 1, j = a; i <= b; i ++ , j -- ){res = (LL)res * j % p;res = (LL) res * qpow(i, p - 2, p) % p;}return res;
}
同样的,如果输出排列、组合结果的话需要利用公式。
时间复杂度: O ( p × log p n ) O(p \times \log_p n) O(p×logpn)
可以处理 a , b ≤ 1 0 18 , p ≤ 1 0 5 a,b \le 10^{18},p \le 10^5 a,b≤1018,p≤105 以内规模的数据
最后,如果觉得对您有帮助的话,点个赞再走吧!
相关文章:

【C++】 排列与组合算法详解(进阶篇)
文章目录 写在前面算法1:朴素算法思路缺点 算法2:递推预处理思路时间复杂度: O ( n 2 ) O(n^2) O(n2) 算法3:阶乘逆元思路时间复杂度: O ( n log n ) O(n \log n) O(nlogn)思考:读者也可以尝试写 O ( n…...

Godot引擎 4.0 文档 - 循序渐进教程 - 监听玩家输入
本文为Google Translate英译中结果,DrGraph在此基础上加了一些校正。英文原版页面: Listening to player input — Godot Engine (stable) documentation in English 监听玩家输入 在上一课创建您的第一个脚本的基础上,让我们看看任何游戏…...

Docker笔记9 | Docker中网络功能知识梳理和了解
9 | Docker中网络功能知识梳理和了解 1 外部访问容器1.1 访问方式1.2 映射所有接口地址1.3 映射到指定地址的指定端口1.4 映射到指定地址的任意端口1.5 查看映射端口配置 2 容器互联2.1 新建网络2.2 连接容器 3 配置DNS 简单说:Docker 允许通过外部访问容器或容器互…...

生态系统模型:SolVES、DNDC、CMIP6、GEE林业、APSIM、InVEST、无人机遥感、ArcGIS Pro模型等
基于R语言APSIM模型高级应用及批量模拟实践技术 CMIP6 数据处理方法与典型案例分析实践技术 Python 与 Noah-MP 陆面过程模型融合技术及在站点、区域模拟实践应用 双碳目标下基于“遥感”融合技术在碳储量、碳收支、碳循环等多领域监测与模拟实践应用 基于Citespace和vosvi…...

常见分布函数。
一维常见分布函数 1.离散型 ① 0 - 1分布 记 X~B(1,p) 如果X的概率分布为 ( 1 0 p 1 − p ) \begin{pmatrix} 1 & 0 \\ p & 1-p \end{pmatrix} (1p01−p),则称X服从参数为P的0-1分布(0<p<1)。 注:0-1分布又称一次伯努利试…...

【网络安全】红队攻防之基础免杀
引言 本文主要介绍“反射型 dll 注入”及“柔性加载”技术。 反射型 dll 注入 为什么需要反射型 dll 注入 常规的 dll 注入代码如下: int main(int argc, char *argv[]) {HANDLE processHandle;PVOID remoteBuffer;wchar_t dllPath[] TEXT("C:\\experimen…...

CTF入门指南
何为CTF ? CTF(Capture The Flag)夺旗比赛,在网络安全领域中指的是网络安全技术人员之间进行技术竞技的一种比赛形式。CTF起源于1996年DEFCON全球黑客大会,以代替之前黑客们通过互相发起真实攻击进行技术比拼的方式。…...
C:入门级积累(4)
(int *)malloc(10 * sizeof(int))memory allocate动态分配内存,malloc的出现时为了弥补静态内存分配的缺点,传统数组的长度一旦定义之后,就不能更改,比如说,如果我有一个业务在这之前给分配的大小为100,但是࿰…...

基于DBSCAN密度聚类的风电-负荷场景削减方法
目录 1 主要内容 基于密度聚类的数据预处理: 场景提取: 算法流程: 2 部分程序 3 程序结果 4 下载链接 1 主要内容 该程序复现文章《氢能支撑的风-燃气耦合低碳微网容量优化配置研究》第三章内容,实现的是基于DBSCAN…...

服务(第二十七篇)squid-传统、穿透、反向代理
squid代理服务器: 主要提供缓存加速、应用层过滤控制的功能。 代理的工作机制: 1、代替客户机向网站请求数据,从而可以隐藏用户的真实IP地址。 2、将获得的网页数据(静态 Web 元素)保存到缓存中并发送给客户机&#x…...
golang yaml 解析问题
golang 中解析 yaml 格式内容可以使用 yaml.v3 库来解决。下载 go 依赖 go get -u gopkg.in/yaml.v31. 示例 yaml 数据 config_mail_template:description: 验证码one: Verification Codeother: Verification Codeconfig_mail_template_reset_code:description: 重置密码one:…...

setContentHuggingPriority和setContentCompressionResistancePriority的使用
需求: 两个label并排显示,文字内容由服务器返回,label宽度以文字内容自适应,label之间间距大于等于10. 需要考虑以下情况: 当两个label的宽度和 < 屏幕宽度时,各自设置约束,无需处理&#…...

java springboot yml文件配置 多环境yml
如果是properties改用yml,直接改后缀,原文件中的配置语法改用yml的语法即可,系统会自动扫描application.properties和application.yml文件(注意:改了之后需要maven 命令 clean一下,清个缓存)。 …...

DMBOK知识梳理for CDGA/CDGP——第一章数据管理(附常考知识点)
第一章 数据管理 第一章在 CDGA|CDGP考试中分值占比均不是很高,主要侧重点是考概念性的知识,理解数据管理的目标原则、还有与其他概念的区别点,同时掌握几个关键核心的图(车轮图、六边形图、语境关系图)。总体来说难度…...

065:cesium设置带有箭头的线材质(material-9)
第065个 点击查看专栏目录 本示例的目的是介绍如何在vue+cesium中设置带有箭头的线材质,请参考源代码,了解PolylineArrowMaterialProperty的应用。 直接复制下面的 vue+cesium源代码,操作2分钟即可运行实现效果. 文章目录 示例效果配置方式示例源代码(共82行)相关API参考…...
Java常用API
1 常用API API(:Application Programming Interface ):应用程序编程接口1.1 Math类 Math中没有构造方法,类的成员都是静态的(static修饰),通过类名就可以直接调用常用方法方法名说明public static int abs(int a)获取参数a的绝对值public static double ceil(double a) …...

【C++ 学习 ⑥】- C++ 动态内存管理详解
目录 一、new 表达式和 delete 表达式的工作机理 二、operator new 和 operator delete 函数 2.1 - 标准库定义 2.2 - 重载 三、定位 new 表达式 四、常见面试题 4.1 - malloc/free 和 new/delete 的区别 4.2 - 内存泄漏 在 C 中,new 和 delete 既是关键字&…...
【5.21】六、自动化测试—常见技术
目录 6.2 自动化测试常见技术 1. 录制与回放测试 2. 脚本测试 3. 数据驱动测试 6.2 自动化测试常见技术 自动化测试技术有很多种,这里介绍3种常见的技术: 1. 录制与回放测试 录制是指使用自动化测试工具对桌面应用程序或者是Web页面的某一项功能进…...
JavaScript中的事件循环机制,包括事件循环的原理、宏任务和微任务、事件队列和调用栈、以及如何优化事件循环
JavaScript中的事件循环机制是JavaScript运行引擎的核心之一,它决定了代码的执行方式和效率。本文将从几个方面介绍JavaScript中的事件循环机制,包括事件循环的原理、宏任务和微任务、事件队列和调用栈、以及如何优化事件循环。 一、事件循环的原理 事…...
【华为OD机试c++】解压报文【2023 B卷 |200分】
题目描述 为了提升数据传输的效率,会对传输的报文进行压缩处理。 输入一个压缩后的报文,请返回它解压后的原始报文。 压缩规则:n[str],表示方括号内部的 str 正好重复 n 次。 注意 n 为正整数(0 < n < 100&a…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...

抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...

Linux-进程间的通信
1、IPC: Inter Process Communication(进程间通信): 由于每个进程在操作系统中有独立的地址空间,它们不能像线程那样直接访问彼此的内存,所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学
一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件,其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时,价带电子受激发跃迁至导带,形成电子-空穴对,导致材料电导率显著提升。…...
Java中栈的多种实现类详解
Java中栈的多种实现类详解:Stack、LinkedList与ArrayDeque全方位对比 前言一、Stack类——Java最早的栈实现1.1 Stack类简介1.2 常用方法1.3 优缺点分析 二、LinkedList类——灵活的双端链表2.1 LinkedList类简介2.2 常用方法2.3 优缺点分析 三、ArrayDeque类——高…...