当前位置: 首页 > news >正文

论文笔记--Deep contextualized word representations

论文笔记--Deep contextualized word representations

  • 1. 文章简介
  • 2. 文章概括
  • 3 文章重点技术
    • 3.1 BiLM(Bidirectional Language Model)
    • 3.2 ELMo
    • 3.3 将ELMo用于NLP监督任务
  • 4. 文章亮点
  • 5. 原文传送门

1. 文章简介

  • 标题:Deep contextualized word representations
  • 作者:Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer
  • 日期:2018
  • 期刊:arxiv preprint

2. 文章概括

  文章提出了一种语言模型的预训练方法ELMo(Embeddings from Language Models)。与传统仅仅使用最顶层隐藏层的神经网络不同,ELMo将所有biLM隐藏层信息通过线性层汇总,从而使得模型同时将高级特征和低级特征输入到模型输出阶段。ELMo在文章实验的所有NLP任务上均达到或超过了SOTA。

3 文章重点技术

3.1 BiLM(Bidirectional Language Model)

  给定序列 ( t 1 , … , t N ) (t_1, \dots, t_N) (t1,,tN),前向语言模型(生成式)基于当前时刻前的token计算当前时刻的token概率,即在时刻 t t t,给定 ( t 1 , … t k − 1 ) (t_1, \dots t_{k-1}) (t1,tk1),计算 p ( t 1 , … , t N ) = ∏ k = 1 N p ( t k ∣ t 1 , … , t k − 1 ) . p(t_1,\dots, t_N) = \prod_{k=1}^N p(t_k|t_1, \dots, t_{k-1}). p(t1,,tN)=k=1Np(tkt1,,tk1).
  后向语言模型则相反,即通过当前时刻之后的token预测当前时刻token的概率 p ( t 1 , … , t N ) = ∏ k = 1 N p ( t k ∣ t k + 1 , … , t N ) . p(t_1,\dots, t_N) = \prod_{k=1}^N p(t_k|t_{k+1}, \dots, t_N). p(t1,,tN)=k=1Np(tktk+1,,tN).
  双向语言模型(biLM)将上述二者结合,最大对数似然 ∑ k = 1 N log ⁡ p ( t k ∣ t 1 , … , t k − 1 ; Θ x , Θ ⃗ L S T M , Θ s ) + log ⁡ p ( t k ∣ t k + 1 , … , t N ; Θ x , Θ ← L S T M , Θ s ) \sum_{k=1}^N \log p(t_k|t_1, \dots, t_{k-1};\Theta_x, \vec{\Theta}_{LSTM}, \Theta_s) +\hspace{.3cm} \\\log p(t_k|t_{k+1}, \dots, t_N;\Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s) k=1Nlogp(tkt1,,tk1;Θx,Θ LSTM,Θs)+logp(tktk+1,,tN;Θx,Θ LSTM,Θs),其中 Θ x \Theta_x Θx表示token的表征参数, Θ s \Theta_s Θs表示Softmax层的参数, Θ → L S T M , Θ ← L S T M \overrightarrow{\Theta}_{LSTM}, \overleftarrow{\Theta}_{LSTM} Θ LSTM,Θ LSTM分别表示前向和后向LSTM的参数。

3.2 ELMo

  对于任意token t k t_k tk,L层的biLM会计算 R k = { h k , j L M ∣ j = 0 , … , L } R_k = \{\boldsymbol{h}_{k,j}^{LM}|j=0,\dots, L\} Rk={hk,jLMj=0,,L},其中 h k , 0 L M {h}_{k,0}^{LM} hk,0LM表示token层, h k , j L M = [ h → k , j L M ; h ← k , j L M ] \boldsymbol{h}_{k,j}^{LM}=[\overrightarrow{\boldsymbol{h}}_{k,j}^{LM};\overleftarrow{\boldsymbol{h}}_{k,j}^{LM}] hk,jLM=[h k,jLM;h k,jLM]表示每一个LSTM层。
  最终ELMo通过线性层将所有层的信息汇总: E L M o k t a s k = E ( R k ; Θ t a s k ) = γ t a s k ∑ j = 0 L s j t a s k ELMo_k^{task} = E(R_k;\Theta^{task})=\gamma^{task} \sum_{j=0}^L s_j^{task} ELMoktask=E(Rk;Θtask)=γtaskj=0Lsjtask,其中 s j t a s k s_j^{task} sjtask为softmax权重, γ t a s k \gamma^{task} γtask为标量参数,可以将ELMo向量放缩。
  文章通过数值实验表明,高层和底层捕获到的信息有所区别,不同的下游任务可能用到高层或底层的特征:高层信息可用于依赖分析等语义分析任务,底层信息可用于POS等语法分析任务。从而文章选择将每一层的信息结合,一起输送给模型。

3.3 将ELMo用于NLP监督任务

  给定NLP的监督任务,我们先不考虑标签,直接将biLM在数据集上训练,得到每个token的 E L M o k t a s k ELMo_k^{task} ELMoktask。然后冻结biLM的权重,将每个token的 x k x_k xk(通过字符CNN得到)连同 E L M o k t a s k ELMo_k^{task} ELMoktask一起输入到监督模型(RNN,CNN等),进行训练。此外,文章提出在输出阶段也可增加 E L M o k t a s k ELMo_k^{task} ELMoktask,即将 [ h k ; E L M o k t a s k ] [h_k; ELMo_k^{task}] [hk;ELMoktask]传入softmax层
  文章测试了将ELMo向量放入不同阶段的效果,如下表所示,将ELMo同时增加到输入和输出阶段的表现最好。
input-output

4. 文章亮点

  文章提出了将bi-LSTM预训练向量用于NLP下游任务的方法,此外,文章通过线性层将biLM的所有层信息全部汇总,通过高级特征+低级特征共同完成训练。ELMo模型在多个任务上实现了SOTA,且显著提升了下游任务的收敛速率。

5. 原文传送门

Deep contextualized word representations

相关文章:

论文笔记--Deep contextualized word representations

论文笔记--Deep contextualized word representations 1. 文章简介2. 文章概括3 文章重点技术3.1 BiLM(Bidirectional Language Model)3.2 ELMo3.3 将ELMo用于NLP监督任务 4. 文章亮点5. 原文传送门 1. 文章简介 标题:Deep contextualized word representations作者…...

【MySQL高级篇笔记-性能分析工具的使用 (中) 】

此笔记为尚硅谷MySQL高级篇部分内容 目录 一、数据库服务器的优化步骤 二、查看系统性能参数 三、统计SQL的查询成本:last_query_cost 四、定位执行慢的 SQL:慢查询日志 1、开启慢查询日志参数 2、查看慢查询数目 3、慢查询日志分析工具&#xf…...

大学生数学建模题论文

大学生数学建模题论文篇1 浅论高中数学建模与教学设想 论文关键词:数学建模 数学 应用意识 数学建模教学 论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中…...

论文阅读 —— 滤波激光SLAM

文章目录 FAST-LIO2FAST-LIOIMUR2LIVER3LIVEEKFLINS退化摘要第一句 FAST-LIO2 摘要: 本文介绍了FAST-LIO2:一种快速、稳健、通用的激光雷达惯性里程计框架。 FAST-LIO2建立在高效紧耦合迭代卡尔曼滤波器的基础上,有两个关键的新颖之处&#…...

JavaScript键盘事件

目录 一、keydown:按下键盘上的任意键时触发。 二、keyup:释放键盘上的任意键时触发。 三、keypress:在按下并释放能够产生字符的键时触发(不包括功能键等)。 四、input:在文本输入框或可编辑元素的内容…...

opengl灯光基础:2.1 光照基础知识

光照: 光照以不同的方式影响着我们看到的世界,有时甚至是以很戏剧化的方式。当手电筒照射在物体上时,我们希望物体朝向光线的一侧看起来更亮。我们所居住的地球上的点,在中午朝向太阳时候被照得很亮,但随着地球的自转…...

大屏时代:引领信息可视化的新潮流

在信息时代的浪潮下,数据已经成为推动各行各业发展的重要动力。然而,海量的数据如何快速、直观地呈现给用户,成为了一个亟待解决的难题。在这样的背景下,可视化大屏应运而生,以其出色的表现力和交互性成为信息展示的佼…...

ChatGTP全景图 | 背景+技术篇

引言:人类以为的丰功伟绩,不过是开端的开端……我们在未来100年取得的技术进步,将远超我们从控制火种到发明车轮以来所取得的一切成就。——By Sam Altman 说明:ChatGPT发布后,我第一时间体验了它的对话、翻译、编程、…...

计算机专业学习的核心是什么?

既然是学习CS,那么在这里,我粗浅的把计算机编程领域的知识分为三个部分: 基础知识 特定领域知识 框架和开发技能 基础知识是指不管从事任何方向的软件工程师都应该掌握的,比如数据结构、算法、操作系统。 特定领域知识就是你…...

基于springboot地方旅游系统的设计与实现

摘 要 本次设计内容是基于Springboot的旅游系统的设计与实现,采用B/S三层架构分别是Web表现层、Service业务层、Dao数据访问层,并使用Springboot,MyBatis二大框架整合开发服务器端,前端使用vue,elementUI技术&…...

一些学习资料链接

组件化和CocoaPods iOS 组件化的三种方案_迷曳的博客-CSDN博客 CocoaPods 私有化 iOS组件化----Pod私有库创建及使用 - 简书 CocoaPods1.9.1和1.8 使用 出现CDN: trunk URL couldnt be downloaded: - 简书 cocoapod制作私有库repo - 简书 【ios开发】 上传更新本地项目到…...

Webpack打包图片-JS-Vue

1 Webpack打包图片 2 Webpack打包JS代码 3 Babel和babel-loader 5 resolve模块解析 4 Webpack打包Vue webpack5打包 的过程: 在webpack的配置文件里面编写rules,type类型有多种,每个都有自己的作用,想要把小内存的图片转成bas…...

进程控制(Linux)

进程控制 fork 在Linux中,fork函数是非常重要的函数,它从已存在进程中创建一个新进程。新进程为子进程,而原进程为父进程。 返回值: 在子进程中返回0,父进程中返回子进程的PID,子进程创建失败返回-1。 …...

C Primer Plus第十四章编程练习答案

学完C语言之后,我就去阅读《C Primer Plus》这本经典的C语言书籍,对每一章的编程练习题都做了相关的解答,仅仅代表着我个人的解答思路,如有错误,请各位大佬帮忙点出! 由于使用的是命令行参数常用于linux系…...

又名管道和无名管道

一、进程间通信(IPC,InterProcess Communication) 概念:就是进程和进程之间交换信息。 常用通信方式 无名管道(pipe) 有名管道 (fifo) 信号(signal) 共…...

操作系统复习4.1.0-文件管理结构

定义 一组有意义的信息的集合 属性 文件名、标识符、类型、位置、大小、创建时间、上次修改时间、文件所有者信息、保护信息 操作系统向上提供的功能 创建文件、删除文件、读文件、写文件、打开文件、关闭文件 这6个都是系统调用 创建文件 创建文件时调用Create系统调用…...

【嵌入式烧录/刷写文件】-2.6-剪切/保留Intel Hex文件中指定地址范围内的数据

案例背景: 有如下一段HEX文件,保留地址范围0x9140-0x91BF内的数据,删除地址范围0x9140-0x91BF外的数据。 :2091000058595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273747576775F :2091200078797A7B7C7D7E7F808182838485868788898A…...

JavaScript表单事件(下篇)

目录 八、keydown: 当用户按下键盘上的任意键时触发。 九、keyup: 当用户释放键盘上的键时触发。 十、keypress: 当用户按下键盘上的字符键时触发。 十一、focusin: 当表单元素或其子元素获得焦点时触发。 十二、focusout: 当表单元素或其子元素失去焦点时触发。 十三、c…...

机器学习 | SVD奇异值分解

本文整理自哔哩哔哩视频:什么是奇异值分解SVD–SVD如何分解时空矩阵 📚奇异值分解是什么? M是原始矩阵,它可以是任意的矩阵,奇异值分解就是将它分解为三个矩阵相乘。U和V是方阵,∑是不规则矩阵,…...

chatgpt赋能python:Python取值:介绍

Python取值:介绍 Python是一种非常流行的高级编程语言,适用于各种任务,包括数据科学、机器学习、Web开发和自动化。它被广泛使用,因为它易于学习、易于使用、易于阅读和易于维护。Python中的取值对于程序员来说是一个极其有用的工…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

C++ 基础特性深度解析

目录 引言 一、命名空间(namespace) C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用(reference)​ C 中的引用​ 与 C 语言的对比​ 四、inline(内联函数…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

Android屏幕刷新率与FPS(Frames Per Second) 120hz

Android屏幕刷新率与FPS(Frames Per Second) 120hz 屏幕刷新率是屏幕每秒钟刷新显示内容的次数,单位是赫兹(Hz)。 60Hz 屏幕:每秒刷新 60 次,每次刷新间隔约 16.67ms 90Hz 屏幕:每秒刷新 90 次,…...

【R语言编程——数据调用】

这里写自定义目录标题 可用库及数据集外部数据导入方法查看数据集信息 在R语言中,有多个库支持调用内置数据集或外部数据,包括studentdata等教学或示例数据集。以下是常见的库和方法: 可用库及数据集 openintro库 该库包含多个教学数据集&a…...

记一次spark在docker本地启动报错

1,背景 在docker中部署spark服务和调用spark服务的微服务,微服务之间通过fegin调用 2,问题,docker容器中服务器来后,注册中心都有,调用服务也正常,但是调用spark启动任务后报错,报错…...

ABB馈线保护 REJ601 BD446NN1XG

配电网基本量程数字继电器 REJ601是一种专用馈线保护继电器,用于保护一次和二次配电网络中的公用事业和工业电力系统。该继电器在一个单元中提供了保护和监控功能的优化组合,具有同类产品中最佳的性能和可用性。 REJ601是一种专用馈线保护继电器&#xf…...

八、【ESP32开发全栈指南:UDP客户端】

1. 环境准备 安装ESP-IDF v4.4 (官方指南)确保Python 3.7 和Git已安装 2. 创建项目 idf.py create-project udp_client cd udp_client3. 完整优化代码 (main/main.c) #include <string.h> #include "freertos/FreeRTOS.h" #include "freertos/task.h&…...