当前位置: 首页 > news >正文

论文笔记--Deep contextualized word representations

论文笔记--Deep contextualized word representations

  • 1. 文章简介
  • 2. 文章概括
  • 3 文章重点技术
    • 3.1 BiLM(Bidirectional Language Model)
    • 3.2 ELMo
    • 3.3 将ELMo用于NLP监督任务
  • 4. 文章亮点
  • 5. 原文传送门

1. 文章简介

  • 标题:Deep contextualized word representations
  • 作者:Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer
  • 日期:2018
  • 期刊:arxiv preprint

2. 文章概括

  文章提出了一种语言模型的预训练方法ELMo(Embeddings from Language Models)。与传统仅仅使用最顶层隐藏层的神经网络不同,ELMo将所有biLM隐藏层信息通过线性层汇总,从而使得模型同时将高级特征和低级特征输入到模型输出阶段。ELMo在文章实验的所有NLP任务上均达到或超过了SOTA。

3 文章重点技术

3.1 BiLM(Bidirectional Language Model)

  给定序列 ( t 1 , … , t N ) (t_1, \dots, t_N) (t1,,tN),前向语言模型(生成式)基于当前时刻前的token计算当前时刻的token概率,即在时刻 t t t,给定 ( t 1 , … t k − 1 ) (t_1, \dots t_{k-1}) (t1,tk1),计算 p ( t 1 , … , t N ) = ∏ k = 1 N p ( t k ∣ t 1 , … , t k − 1 ) . p(t_1,\dots, t_N) = \prod_{k=1}^N p(t_k|t_1, \dots, t_{k-1}). p(t1,,tN)=k=1Np(tkt1,,tk1).
  后向语言模型则相反,即通过当前时刻之后的token预测当前时刻token的概率 p ( t 1 , … , t N ) = ∏ k = 1 N p ( t k ∣ t k + 1 , … , t N ) . p(t_1,\dots, t_N) = \prod_{k=1}^N p(t_k|t_{k+1}, \dots, t_N). p(t1,,tN)=k=1Np(tktk+1,,tN).
  双向语言模型(biLM)将上述二者结合,最大对数似然 ∑ k = 1 N log ⁡ p ( t k ∣ t 1 , … , t k − 1 ; Θ x , Θ ⃗ L S T M , Θ s ) + log ⁡ p ( t k ∣ t k + 1 , … , t N ; Θ x , Θ ← L S T M , Θ s ) \sum_{k=1}^N \log p(t_k|t_1, \dots, t_{k-1};\Theta_x, \vec{\Theta}_{LSTM}, \Theta_s) +\hspace{.3cm} \\\log p(t_k|t_{k+1}, \dots, t_N;\Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s) k=1Nlogp(tkt1,,tk1;Θx,Θ LSTM,Θs)+logp(tktk+1,,tN;Θx,Θ LSTM,Θs),其中 Θ x \Theta_x Θx表示token的表征参数, Θ s \Theta_s Θs表示Softmax层的参数, Θ → L S T M , Θ ← L S T M \overrightarrow{\Theta}_{LSTM}, \overleftarrow{\Theta}_{LSTM} Θ LSTM,Θ LSTM分别表示前向和后向LSTM的参数。

3.2 ELMo

  对于任意token t k t_k tk,L层的biLM会计算 R k = { h k , j L M ∣ j = 0 , … , L } R_k = \{\boldsymbol{h}_{k,j}^{LM}|j=0,\dots, L\} Rk={hk,jLMj=0,,L},其中 h k , 0 L M {h}_{k,0}^{LM} hk,0LM表示token层, h k , j L M = [ h → k , j L M ; h ← k , j L M ] \boldsymbol{h}_{k,j}^{LM}=[\overrightarrow{\boldsymbol{h}}_{k,j}^{LM};\overleftarrow{\boldsymbol{h}}_{k,j}^{LM}] hk,jLM=[h k,jLM;h k,jLM]表示每一个LSTM层。
  最终ELMo通过线性层将所有层的信息汇总: E L M o k t a s k = E ( R k ; Θ t a s k ) = γ t a s k ∑ j = 0 L s j t a s k ELMo_k^{task} = E(R_k;\Theta^{task})=\gamma^{task} \sum_{j=0}^L s_j^{task} ELMoktask=E(Rk;Θtask)=γtaskj=0Lsjtask,其中 s j t a s k s_j^{task} sjtask为softmax权重, γ t a s k \gamma^{task} γtask为标量参数,可以将ELMo向量放缩。
  文章通过数值实验表明,高层和底层捕获到的信息有所区别,不同的下游任务可能用到高层或底层的特征:高层信息可用于依赖分析等语义分析任务,底层信息可用于POS等语法分析任务。从而文章选择将每一层的信息结合,一起输送给模型。

3.3 将ELMo用于NLP监督任务

  给定NLP的监督任务,我们先不考虑标签,直接将biLM在数据集上训练,得到每个token的 E L M o k t a s k ELMo_k^{task} ELMoktask。然后冻结biLM的权重,将每个token的 x k x_k xk(通过字符CNN得到)连同 E L M o k t a s k ELMo_k^{task} ELMoktask一起输入到监督模型(RNN,CNN等),进行训练。此外,文章提出在输出阶段也可增加 E L M o k t a s k ELMo_k^{task} ELMoktask,即将 [ h k ; E L M o k t a s k ] [h_k; ELMo_k^{task}] [hk;ELMoktask]传入softmax层
  文章测试了将ELMo向量放入不同阶段的效果,如下表所示,将ELMo同时增加到输入和输出阶段的表现最好。
input-output

4. 文章亮点

  文章提出了将bi-LSTM预训练向量用于NLP下游任务的方法,此外,文章通过线性层将biLM的所有层信息全部汇总,通过高级特征+低级特征共同完成训练。ELMo模型在多个任务上实现了SOTA,且显著提升了下游任务的收敛速率。

5. 原文传送门

Deep contextualized word representations

相关文章:

论文笔记--Deep contextualized word representations

论文笔记--Deep contextualized word representations 1. 文章简介2. 文章概括3 文章重点技术3.1 BiLM(Bidirectional Language Model)3.2 ELMo3.3 将ELMo用于NLP监督任务 4. 文章亮点5. 原文传送门 1. 文章简介 标题:Deep contextualized word representations作者…...

【MySQL高级篇笔记-性能分析工具的使用 (中) 】

此笔记为尚硅谷MySQL高级篇部分内容 目录 一、数据库服务器的优化步骤 二、查看系统性能参数 三、统计SQL的查询成本:last_query_cost 四、定位执行慢的 SQL:慢查询日志 1、开启慢查询日志参数 2、查看慢查询数目 3、慢查询日志分析工具&#xf…...

大学生数学建模题论文

大学生数学建模题论文篇1 浅论高中数学建模与教学设想 论文关键词:数学建模 数学 应用意识 数学建模教学 论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中…...

论文阅读 —— 滤波激光SLAM

文章目录 FAST-LIO2FAST-LIOIMUR2LIVER3LIVEEKFLINS退化摘要第一句 FAST-LIO2 摘要: 本文介绍了FAST-LIO2:一种快速、稳健、通用的激光雷达惯性里程计框架。 FAST-LIO2建立在高效紧耦合迭代卡尔曼滤波器的基础上,有两个关键的新颖之处&#…...

JavaScript键盘事件

目录 一、keydown:按下键盘上的任意键时触发。 二、keyup:释放键盘上的任意键时触发。 三、keypress:在按下并释放能够产生字符的键时触发(不包括功能键等)。 四、input:在文本输入框或可编辑元素的内容…...

opengl灯光基础:2.1 光照基础知识

光照: 光照以不同的方式影响着我们看到的世界,有时甚至是以很戏剧化的方式。当手电筒照射在物体上时,我们希望物体朝向光线的一侧看起来更亮。我们所居住的地球上的点,在中午朝向太阳时候被照得很亮,但随着地球的自转…...

大屏时代:引领信息可视化的新潮流

在信息时代的浪潮下,数据已经成为推动各行各业发展的重要动力。然而,海量的数据如何快速、直观地呈现给用户,成为了一个亟待解决的难题。在这样的背景下,可视化大屏应运而生,以其出色的表现力和交互性成为信息展示的佼…...

ChatGTP全景图 | 背景+技术篇

引言:人类以为的丰功伟绩,不过是开端的开端……我们在未来100年取得的技术进步,将远超我们从控制火种到发明车轮以来所取得的一切成就。——By Sam Altman 说明:ChatGPT发布后,我第一时间体验了它的对话、翻译、编程、…...

计算机专业学习的核心是什么?

既然是学习CS,那么在这里,我粗浅的把计算机编程领域的知识分为三个部分: 基础知识 特定领域知识 框架和开发技能 基础知识是指不管从事任何方向的软件工程师都应该掌握的,比如数据结构、算法、操作系统。 特定领域知识就是你…...

基于springboot地方旅游系统的设计与实现

摘 要 本次设计内容是基于Springboot的旅游系统的设计与实现,采用B/S三层架构分别是Web表现层、Service业务层、Dao数据访问层,并使用Springboot,MyBatis二大框架整合开发服务器端,前端使用vue,elementUI技术&…...

一些学习资料链接

组件化和CocoaPods iOS 组件化的三种方案_迷曳的博客-CSDN博客 CocoaPods 私有化 iOS组件化----Pod私有库创建及使用 - 简书 CocoaPods1.9.1和1.8 使用 出现CDN: trunk URL couldnt be downloaded: - 简书 cocoapod制作私有库repo - 简书 【ios开发】 上传更新本地项目到…...

Webpack打包图片-JS-Vue

1 Webpack打包图片 2 Webpack打包JS代码 3 Babel和babel-loader 5 resolve模块解析 4 Webpack打包Vue webpack5打包 的过程: 在webpack的配置文件里面编写rules,type类型有多种,每个都有自己的作用,想要把小内存的图片转成bas…...

进程控制(Linux)

进程控制 fork 在Linux中,fork函数是非常重要的函数,它从已存在进程中创建一个新进程。新进程为子进程,而原进程为父进程。 返回值: 在子进程中返回0,父进程中返回子进程的PID,子进程创建失败返回-1。 …...

C Primer Plus第十四章编程练习答案

学完C语言之后,我就去阅读《C Primer Plus》这本经典的C语言书籍,对每一章的编程练习题都做了相关的解答,仅仅代表着我个人的解答思路,如有错误,请各位大佬帮忙点出! 由于使用的是命令行参数常用于linux系…...

又名管道和无名管道

一、进程间通信(IPC,InterProcess Communication) 概念:就是进程和进程之间交换信息。 常用通信方式 无名管道(pipe) 有名管道 (fifo) 信号(signal) 共…...

操作系统复习4.1.0-文件管理结构

定义 一组有意义的信息的集合 属性 文件名、标识符、类型、位置、大小、创建时间、上次修改时间、文件所有者信息、保护信息 操作系统向上提供的功能 创建文件、删除文件、读文件、写文件、打开文件、关闭文件 这6个都是系统调用 创建文件 创建文件时调用Create系统调用…...

【嵌入式烧录/刷写文件】-2.6-剪切/保留Intel Hex文件中指定地址范围内的数据

案例背景: 有如下一段HEX文件,保留地址范围0x9140-0x91BF内的数据,删除地址范围0x9140-0x91BF外的数据。 :2091000058595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273747576775F :2091200078797A7B7C7D7E7F808182838485868788898A…...

JavaScript表单事件(下篇)

目录 八、keydown: 当用户按下键盘上的任意键时触发。 九、keyup: 当用户释放键盘上的键时触发。 十、keypress: 当用户按下键盘上的字符键时触发。 十一、focusin: 当表单元素或其子元素获得焦点时触发。 十二、focusout: 当表单元素或其子元素失去焦点时触发。 十三、c…...

机器学习 | SVD奇异值分解

本文整理自哔哩哔哩视频:什么是奇异值分解SVD–SVD如何分解时空矩阵 📚奇异值分解是什么? M是原始矩阵,它可以是任意的矩阵,奇异值分解就是将它分解为三个矩阵相乘。U和V是方阵,∑是不规则矩阵,…...

chatgpt赋能python:Python取值:介绍

Python取值:介绍 Python是一种非常流行的高级编程语言,适用于各种任务,包括数据科学、机器学习、Web开发和自动化。它被广泛使用,因为它易于学习、易于使用、易于阅读和易于维护。Python中的取值对于程序员来说是一个极其有用的工…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

微信小程序云开发平台MySQL的连接方式

注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...

Unity UGUI Button事件流程

场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...