My Note of Diffusion Models
Diffusion Models
Links: https://theaisummer.com/diffusion-models/
Markovian Hierachical VAE
rvs:
- data: x 0 x_{0} x0,
- representation: x T x_{T} xT
( p ( x 0 , x 1 , ⋯ , x T ) , q ( x 1 , ⋯ , x T ∣ x 0 ) ) (p(x_0,x_1,\cdots,x_T),q(x_1,\cdots,x_{T}|x_0)) (p(x0,x1,⋯,xT),q(x1,⋯,xT∣x0))
where x 1 , ⋯ , x T x_1,\cdots,x_T x1,⋯,xT is unobservable, and
- generative model/backward trajectory:
p ( x 0 , x 1 , ⋯ , x T ) = p ( x T ) ∏ t p ( x t − 1 ∣ x t ) p(x_0,x_1,\cdots,x_T)=p(x_T)\prod_tp(x_{t-1}|x_{t}) p(x0,x1,⋯,xT)=p(xT)t∏p(xt−1∣xt) - forward trajectory(Markov process):
q ( x 1 , ⋯ , x T ∣ x 0 ) ) = ∏ t q ( x t ∣ x t − 1 ) q(x_1,\cdots,x_{T}|x_0))=\prod_tq(x_{t}|x_{t-1}) q(x1,⋯,xT∣x0))=t∏q(xt∣xt−1)
E L B O : = ∫ q ( x T ∣ x 0 ) log p ( x T ) q ( x T ∣ x 0 ) d x T + ∑ t = 2 T ∫ q ( x t − 1 , x t ∣ x 0 ) log p ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) d x t − 1 x t + ∫ q ( x 1 ∣ x 0 ) log p ( x 1 ∣ x 0 ) d x 1 ELBO:=\int q(x_{T}|x_{0}) \log \frac{p(x_{T})}{q(x_{T}|x_{0})}\mathrm{d}x_{T}\\ +\sum_{t=2}^T \int q(x_{t-1},x_{t}|x_{0})\log \frac{p(x_{t-1}|x_{t})}{q(x_{t-1}|x_{t}, x_{0})}\mathrm{d}x_{t-1}x_{t}\\+\int q(x_{1}|x_{0})\log p(x_{1}|x_{0})\mathrm{d}x_{1} ELBO:=∫q(xT∣x0)logq(xT∣x0)p(xT)dxT+t=2∑T∫q(xt−1,xt∣x0)logq(xt−1∣xt,x0)p(xt−1∣xt)dxt−1xt+∫q(x1∣x0)logp(x1∣x0)dx1
Loss
L o s s : = − E L B O = D K L ( q ( x T ∣ x 0 ) ∥ p ( x T ) ) + ∑ t = 2 T ∫ q ( x t ∣ x 0 ) d x t D K L ( q ( x t − 1 ∣ x t , x 0 ) ∥ p ( x t − 1 ∣ x t ) ) − ∫ q ( x 1 ∣ x 0 ) log p ( x 1 ∣ x 0 ) d x 1 Loss:=-ELBO= D_{KL} (q(x_{T}|x_{0})\| p(x_{T}))\\ +\sum_{t=2}^T \int q(x_{t}|x_{0})\mathrm{d}x_{t}D_{KL}(q(x_{t-1}|x_{t}, x_{0})\|p(x_{t-1}|x_{t}))\\-\int q(x_{1}|x_{0})\log p(x_{1}|x_{0})\mathrm{d}x_{1} Loss:=−ELBO=DKL(q(xT∣x0)∥p(xT))+t=2∑T∫q(xt∣x0)dxtDKL(q(xt−1∣xt,x0)∥p(xt−1∣xt))−∫q(x1∣x0)logp(x1∣x0)dx1
- prior matching term
- denoising matching term
- reconstruction term
Diffusion Models
basic assumption
- tractable distr: p ( x T ) p(x_{T}) p(xT)
- forward trajectory(Markov process): q ( x t ∣ x t − 1 ) q(x_{t}|x_{t-1}) q(xt∣xt−1) is fixed (has no unlearned parameter)
Definition(Diffusion Model)
- tractable distr: p ( x T ) ∼ N ( 0 , 1 ) p(x_{T})\sim N(0,1) p(xT)∼N(0,1)
- generative model/backward trajectory: p ( x t − 1 ∣ x t ) ∼ N ( μ ( t ) , Σ ( t ) ) p(x_{t-1}|x_{t})\sim N(\mu(t),\Sigma(t)) p(xt−1∣xt)∼N(μ(t),Σ(t))
- forward trajectory(Gaussian diffusion): q ( x t ∣ x t − 1 ) ∼ N ( x t − 1 1 − β t , β t ) q(x_{t}|x_{t-1})\sim N(x_{t-1}\sqrt{1-\beta_t},\beta_t) q(xt∣xt−1)∼N(xt−11−βt,βt),
Parameters:
- β t = 1 − α t \beta_t=1-\alpha_t βt=1−αt or α ˉ t : = ∏ t α t \bar{\alpha}_t:=\prod_t\alpha_t αˉt:=∏tαt: noise schedule, where α t \alpha_t αt is small
- α ˉ t \sqrt{\bar{\alpha}_t} αˉt: signal rate
Fact.
- q ( x t ∣ x 0 ) ∼ N ( x 0 α ˉ t , 1 − α ˉ t ) q(x_{t}|x_{0})\sim N(x_{0}\sqrt{\bar{\alpha}_t},1-\bar{\alpha}_t) q(xt∣x0)∼N(x0αˉt,1−αˉt)
- q ( x t − 1 ∣ x t , x 0 ) ∼ N ( μ q ( x t , x 0 ) , σ 2 ( t ) ) q(x_{t-1}|x_{t},x_{0})\sim N(\mu_q(x_t ,x_0),\sigma^2(t)) q(xt−1∣xt,x0)∼N(μq(xt,x0),σ2(t)) where
μ q ( x t , x 0 ) : = α t ( 1 − α ˉ t − 1 ) x t − α ˉ t − 1 ( 1 − α t ) x 0 1 − α ˉ t = 1 α t x t − β t 1 − α ˉ t α t ϵ 0 \mu_q(x_t,x_0):=\frac{\sqrt{\alpha_t}(1-\bar\alpha_{t-1})x_t-\sqrt{\bar\alpha_{t-1}}(1-\alpha_{t})x_0}{1-\bar\alpha_t}\\ =\frac{1}{\sqrt{\alpha_t}}x_t-\frac{\beta_t}{\sqrt{1-\bar\alpha_t}\sqrt{\alpha_t}}\epsilon_0 μq(xt,x0):=1−αˉtαt(1−αˉt−1)xt−αˉt−1(1−αt)x0=αt1xt−1−αˉtαtβtϵ0
and σ 2 ( t ) : = 1 − α ˉ t − 1 1 − α ˉ t β t \sigma^2(t):=\frac{1-\bar\alpha_{t-1}}{1-\bar\alpha_t}\beta_{t} σ2(t):=1−αˉt1−αˉt−1βt.
Design I: p ( x t − 1 ∣ x t ) ∼ N ( μ ( t ) , Σ ( t ) ) p(x_{t-1}|x_{t})\sim N(\mu(t),\Sigma(t)) p(xt−1∣xt)∼N(μ(t),Σ(t)):
μ ( t ) = α t ( 1 − α ˉ t − 1 ) x t − β t α ˉ t − 1 x ^ ( x t , t ) 1 − α ˉ t Σ ( t ) = σ 2 ( t ) \mu(t)=\frac{\sqrt{\alpha_t}(1-\bar\alpha_{t-1})x_t-\beta_{t}\sqrt{\bar\alpha_{t-1}}\hat{x}(x_t,t)}{1-\bar\alpha_t}\\ \Sigma(t)=\sigma^2(t) μ(t)=1−αˉtαt(1−αˉt−1)xt−βtαˉt−1x^(xt,t)Σ(t)=σ2(t)
Design II: p ( x t − 1 ∣ x t ) ∼ N ( μ ( t ) , Σ ( t ) ) p(x_{t-1}|x_{t})\sim N(\mu(t),\Sigma(t)) p(xt−1∣xt)∼N(μ(t),Σ(t)):
μ ( t ) = 1 α t x t − β t 1 − α ˉ t α t ϵ ^ ( x t , t ) Σ ( t ) = σ 2 ( t ) \mu(t)=\frac{1}{\sqrt{\alpha_t}}x_t-\frac{\beta_t}{\sqrt{1-\bar\alpha_t}\sqrt{\alpha_t}}\hat{\epsilon}(x_t,t)\\ \Sigma(t)=\sigma^2(t) μ(t)=αt1xt−1−αˉtαtβtϵ^(xt,t)Σ(t)=σ2(t)
Fact.
Under the design I:
D K L ( q ( x t − 1 ∣ x t , x 0 ) ∥ p θ ( x t − 1 ∣ x t ) ) = 1 2 σ t 2 ( 1 − α ˉ t − 1 ) β t 2 ( 1 − α ˉ t ) 2 ∥ x ^ ( x t , t ) − x 0 ∥ 2 = 1 2 ( 1 1 − α ˉ t − 1 − 1 1 − α ˉ t ) ∥ x ^ ( x t , t ) − x 0 ∥ 2 D_{KL} (q(x_{t−1}|x_t , x_0) \| p_θ (x_{t−1} |x_t))=\frac{1}{2\sigma_t^2}\frac{(1-\bar{\alpha}_{t-1})\beta_t^2}{(1-\bar{\alpha}_{t})^2}\|\hat{x}(x_t,t)-x_0\|^2\\ =\frac{1}{2}(\frac{1}{1-\bar{\alpha}_{t-1}}-\frac{1}{1-\bar{\alpha}_{t}})\|\hat{x}(x_t,t)-x_0\|^2 DKL(q(xt−1∣xt,x0)∥pθ(xt−1∣xt))=2σt21(1−αˉt)2(1−αˉt−1)βt2∥x^(xt,t)−x0∥2=21(1−αˉt−11−1−αˉt1)∥x^(xt,t)−x0∥2
Under the design II:
D K L ( q ( x t − 1 ∣ x t , x 0 ) ∥ p θ ( x t − 1 ∣ x t ) ) = 1 2 σ t 2 β t 2 ( 1 − α ˉ t ) α t 2 ∥ ϵ ^ ( x t , t ) − ϵ 0 ∥ 2 D_{KL} (q(x_{t−1}|x_t , x_0) \| p_θ (x_{t−1} |x_t))=\frac{1}{2\sigma_t^2}\frac{\beta_t^2}{(1-\bar{\alpha}_{t})\alpha_t^2}\|\hat{\epsilon}(x_t,t)-\epsilon_0\|^2 DKL(q(xt−1∣xt,x0)∥pθ(xt−1∣xt))=2σt21(1−αˉt)αt2βt2∥ϵ^(xt,t)−ϵ0∥2
Algorithm
Loss:
L = ∑ t L t L t ≈ ∑ ϵ ∼ N ( 0 , 1 ) ∥ ϵ − ϵ ^ ( x t , t ) ∥ 2 , ( 0 ≤ t < T ) L=\sum_t L_t\\ L_t\approx \sum_{\epsilon\sim N(0,1)}\|\epsilon-\hat{\epsilon}(x_{t},t)\|^2,(0\leq t<T) L=t∑LtLt≈ϵ∼N(0,1)∑∥ϵ−ϵ^(xt,t)∥2,(0≤t<T)
where x t : = α ˉ t x 0 + 1 − α ˉ t ϵ x_{t}:=\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1-\bar{\alpha}_t}\epsilon xt:=αˉtx0+1−αˉtϵ.
train NN ϵ ^ \hat\epsilon ϵ^ by data { ( ϵ ^ ( x t ( x 0 , i , ϵ i l ) , t ) , ϵ i l ) , ϵ i l ∼ N ( 0 , 1 ) , l = 1 , ⋯ , L } \{(\hat{\epsilon}(x_{t}(x_{0,i},\epsilon_{il}),t),\epsilon_{il}),\epsilon_{il}\sim N(0,1),l=1,\cdots, L\} {(ϵ^(xt(x0,i,ϵil),t),ϵil),ϵil∼N(0,1),l=1,⋯,L} with size of N L NL NL for each t t t。
Exercise
- Given a latent variable model p ( x , z ) p(x,z) p(x,z) with variational distr. q ( z ∣ x ) q(z|x) q(z∣x). q ( x ) q(x) q(x) represents data distr. and let q ( x , z ) = q ( z ∣ x ) q ( x ) q(x,z)=q(z|x)q(x) q(x,z)=q(z∣x)q(x).
∫ q ( x ) L x = ∫ q ( x , z ) log p ( x , z ) q ( z ∣ x ) ∼ D K L ( q ( x , z ) ∥ p ( x , z ) ) \int q(x)L_x=\int q(x,z)\log\frac{p(x,z)}{q(z|x)}\sim D_{KL}(q(x,z)\|p(x,z)) ∫q(x)Lx=∫q(x,z)logq(z∣x)p(x,z)∼DKL(q(x,z)∥p(x,z))
where L x L_x Lx is LEBO.
References
- Jonathan Ho, Ajay Jain, Pieter Abbeel. Denoising Diffusion Probabilistic Models, 2020.
- Calvin Luo, Understanding Diffusion Models: A Unified Perspective, 2022
相关文章:

My Note of Diffusion Models
Diffusion Models Links: https://theaisummer.com/diffusion-models/ Markovian Hierachical VAE rvs: data: x 0 x_{0} x0,representation: x T x_{T} xT ( p ( x 0 , x 1 , ⋯ , x T ) , q ( x 1 , ⋯ , x T ∣ x 0 ) ) (p(x_0,x_1,\cdots,x_T),q(x_1,\cdots,x_{T…...

【P37】JMeter 仅一次控制器(Once Only Controller)
文章目录 一、仅一次控制器(Once Only Controller)参数说明二、测试计划设计2.1、测试计划一2.1、测试计划二 一、仅一次控制器(Once Only Controller)参数说明 可以让控制器内部的逻辑只执行一次;单次的范围是针对某…...

cleanmymac要不要下载装机?好不好用
当我们收到一台崭新的mac电脑,第一步肯定是找到一款帮助我们管理电脑运行的“电脑管家”,监控内存运行、智能清理系统垃圾、清理Mac大文件旧文件、消除恶意软件、快速卸载更新软件、隐私保护、监控系统运行状况等。基本在上mac电脑防护一款CleanMyMac就够…...

DNS风险分析及防护研究(五):常见的DNS威胁与防御(中科三方)
DNS是互联网运行重要的基础设施,在全球互联网运转中扮演重要作用。互联网中的每一次访问都开始于一次DNS查询,从而将人们更好辨识的域名转换为数字化的IP地址。随着互联网的快速发展以及网络技术的快速发展,DNS固有的缺陷逐步暴露出来&#x…...

使用geoserver发布shp和tiff数据
一、安装并启动geoserver服务 1.1 下载geoserver 进入官网下载 由于geoserver是使用Java语言开发的,所以运行需要java的环境,不同geoserver的版本号对java的版本要求不同,所以选择版本时需注意对应java的版本要求,由于我本地安…...

谷歌周彦祺:LLM浪潮中的女性科学家多面手丨智源大会嘉宾风采
导读 大模型研发竞赛如火如荼,谷歌紧随OpenAI其后推出PalM2、Gemini等系列模型。Scaling Law是否仍然适用于当下的大模型发展?科技巨头与初创企业在竞争中各有哪些优势和劣势?模型研究者应秉持哪些社会责任? 2023智源大会「基础模…...

Burp模块
Target模块 记录流量 1.Target按主机或域名分类记录 2.HTTP History 按时间顺序记录且会记录很多次 3.Target模块的作用 (1)把握网站的整体情况 (2)对一次工作的域进行分析 (3)分析网站存在的攻击面 …...

sql笔记:SQL SERVER字符串填充(标量值函数创建、标量值函数调用)
/*字符串填充 ,如果返回 -1 说明输入参数有错误*/ CREATE FUNCTION [dbo].[uf_pad_string] ( @string_unpadded VARCHAR(100), --123填充前字符串 @pad_char VARCHAR(1), --0 填充的字符串 @pad_count tinyint, --10 填充后字符串长度 @pad_p…...

python使用hTTP方法
Python中可以使用requests库来发送HTTP请求,其中包括GET、POST、PUT、DELETE等方法。下面是一个使用requests库发送HTTP请求的示例: python import requests # 发送GET请求 response requests.get(Example Domain) # 发送POST请求 data {key1: valu…...

JavaSE常用API
1. Math.round(11.5)等于多少?Math.round(- 11.5) 又等于多少? Math.round(11.5)的返回值是 12,Math.round(-11.5)的返回值是-11。四舍五入的原理是在参数上加 0.5然后进行取整。 2. switch 是否能作用在 byte 上,是否能作用在 long 上…...

华为OD机试之模拟商场优惠打折(Java源码)
模拟商场优惠打折 题目描述 模拟商场优惠打折,有三种优惠券可以用,满减券、打折券和无门槛券。 满减券:满100减10,满200减20,满300减30,满400减40,以此类推不限制使用; 打折券&…...

5月VR大数据:Quest 2下跌超1%,其它变化不大
Hello大家好,每月一期的VR内容/硬件大数据统计又和大家见面了。 想了解VR软硬件行情么?关注这里就对了。我们会统计Steam平台的用户及内容等数据,每月初准时为你推送,不要错过喔! 本数据报告包含:Steam VR硬…...

CW32系列模数转换器(ADC)
模数转换器(ADC)的主要功能是将模拟量转换为数字量,方便MCU进行处理。下面以CW32L083为例介绍CW系列的模数转换器的特点和功能,并提供演示实例。 一、概述 CW32L083 内部集成一个 12 位精度、最高 1M SPS 转换速度的逐次逼近型模…...
电动力学专题:电磁场规范不变性与规范自由度
对称性,不变性,相对性,协变形 在现代物理学中常常被认为具有相同的含义(好拗口) 规范与规范的自由度 保证电磁场物理量不改变的情况下,有多组势可供选择,而每组势可以称为一个规范 规范不变性…...

max delay的应用场景与常见问题
max delay与min delay用来约束start points到endpoints点对点的路径长度,set_max_delay约束最大值,set_min_delay约束最小值。 max delay的-from和-to并不局限在get_pins,get_cells和get_clocks同样可以。 set_max_delay 5 -from UFF0/Q -to UFF1/D set_max_delay -from …...

非阻塞队列
非阻塞队列 首先我们要简单的理解下什么是非阻塞队列: 与阻塞队列相反,非阻塞队列的执行并不会被阻塞,无论是消费者的出队,还是生产者的入队。 在底层,非阻塞队列使用的是CAS(compare and swap)来实现线程执行的非阻塞…...

动力电池管理系统(BMS)
BMS技术 目录 BMS技术 一、BMS简介 二、BMS主要功能 1、参数检测 2、剩余电量(SOC)估计 3、充放电控制 4、热管理 5、均衡控制 6、故障诊断 7、信息监控 8、参数标定 9、CAN总线接口 三、BMS架构组成 1、BMS的拓扑架构 1、1集中式架构的B…...

ChatGPT桌面客户端支持gpt4模型,附使用说明
#软件核心功能: 1、支持OpenAI官方秘钥及API2D双秘钥使用;如果全局魔法,可以自己用官方秘钥;没魔法国内可直接使用API2D秘钥; 2、内置GPT4模型选项,如果你的官方秘钥支持可直接使用;你也可以注册…...

Vivado下时序逻辑模块的仿真
文章目录 D触发器两级D触发器带异步复位的D触发器带异步复位和同步置数的D触发器移位寄存器单口RAM伪双口RAM真双口RAM单口ROM 组合逻辑电路在逻辑功能上特点是任意时刻的输出仅仅取决于当前时刻的输入,与电路原来的状态无关。 时序逻辑在逻辑功能上的特点是任意时刻…...

ThreadLocal的使用方式
1. ThreadLocal的使用方式 (1) 在关联数据类中创建private static ThreadLocal 在下面的类中,私有静态 ThreadLocal 实例(serialNum)为调用该类的静态 SerialNum.get() 方法的每个 线程维护了一个“序列号”,该方法将返回当前…...

全面理解:C++中的指针和迭代器,以及解引用操作符(*)和箭头操作符(->)的用法
指针与迭代器的基础概念 指针: 指针是一种变量,其值为另一种类型的对象在计算机内存中的地址。你可以使用指针来直接访问和操作它指向的对象。指针的使用非常强大,但也很危险,因为你有可能错误地操作内存,这可能会导致…...

Vite 使用学习指南
Vite 的基本概念和特点 Vite 是什么,它的主要特点是什么 Vite 是一个基于 ES modules 的前端构建工具,它的主要特点包括: 快速的冷启动:Vite 采用了基于浏览器原生 ES 模块的开发模式,可以在开发时快速启动应用&…...

【算法训练(day6)】双指针模板
一.双指针算法的由来和使用场景 通常情况下我们可能会遇到在某些可遍历的集合中寻找满足某种性质的字串或元素。这时候我们采取暴力的思路就会面临多重循环。我们可以利用题目中所给的集合并利用其性质将多重循环降成一重循环。光用语言描述可能不太好理解。接下来看几个双指针…...

免费常用的API接口大全
免费常用的API接口大全 OPEN AI : ChatGPT 能够模拟人类的语言行为,与用户进行自然的交互。ChatGPT 可以用于处理多种类型的对话,包括对话机器人、问答系统和客服机器人等。它还可以用于各种自然语言处理任务,比如文本摘要、情感分…...

【HTML】第 2 节 - HTML 标签
欢迎来到博主 Apeiron 的博客,祝您旅程愉快 ! 时止则止,时行则行。动静不失其时,其道光明。 目录 1、缘起 2、标题标签 3、段落标签 4、文本格式化标签 5、图像标签 5.1、基本作用 5.2、属性 6、超链接标签 7、音频标…...

MATLAB算法实战应用案例精讲-【数模应用】残差检验(附Java、python和MATLAB代码)
目录 几个高频面试题目 线性回归残差是否一定满足正态分布? 一般情况 特殊情况...

初学Qt(Day03)
今天概览 今天的目标是写一个动态的彩虹灯 一开始是有思路的。只是写的过程中有太多小bug了,真的是防不胜防 我的思路是: 主界面是一个开始界面,点击开始按钮之后,有一个子界面出现,显示出彩虹灯转动的效果。 内部的执…...

皮卡丘xss之htmlspecialchars、xss之href输出、xss之js输出
1.xss之htmlspecialchars htmlspecialchars()函数的功能如下: htmlspecialchars() 函数把预定义的字符转换为 HTML 实体。 预定义的字符是: (1)& (和号)成为 & (2)…...

ArrayList和LinkedList的区别
ArrayList和Vector使用了数组的实现,可以认为ArrayList或者Vector封装了对内部数组的操作,比如向数组中添加,删除,插入新的元素或者数据的扩展和重定向。 LinkedList使用了循环双向链表数据结构。与基于数组ArrayList相比…...

记录 vue3 webpack 使用 iframe 遇到的坑
需求 我尝试用Vue3写一个自己的主页,把常用的功能集中到主页中,如下图 后发现一个好玩的东西,js实现的在网页底部出现鱼和波浪,如下图,就像想也放到自己的主页中,搜索后发现可以在Vue中用iframe标签直接引…...