当前位置: 首页 > news >正文

My Note of Diffusion Models

Diffusion Models

Links: https://theaisummer.com/diffusion-models/

Markovian Hierachical VAE

rvs:

  • data: x 0 x_{0} x0,
  • representation: x T x_{T} xT

( p ( x 0 , x 1 , ⋯ , x T ) , q ( x 1 , ⋯ , x T ∣ x 0 ) ) (p(x_0,x_1,\cdots,x_T),q(x_1,\cdots,x_{T}|x_0)) (p(x0,x1,,xT),q(x1,,xTx0))
where x 1 , ⋯ , x T x_1,\cdots,x_T x1,,xT is unobservable, and

  • generative model/backward trajectory:
    p ( x 0 , x 1 , ⋯ , x T ) = p ( x T ) ∏ t p ( x t − 1 ∣ x t ) p(x_0,x_1,\cdots,x_T)=p(x_T)\prod_tp(x_{t-1}|x_{t}) p(x0,x1,,xT)=p(xT)tp(xt1xt)
  • forward trajectory(Markov process):
    q ( x 1 , ⋯ , x T ∣ x 0 ) ) = ∏ t q ( x t ∣ x t − 1 ) q(x_1,\cdots,x_{T}|x_0))=\prod_tq(x_{t}|x_{t-1}) q(x1,,xTx0))=tq(xtxt1)

E L B O : = ∫ q ( x T ∣ x 0 ) log ⁡ p ( x T ) q ( x T ∣ x 0 ) d x T + ∑ t = 2 T ∫ q ( x t − 1 , x t ∣ x 0 ) log ⁡ p ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) d x t − 1 x t + ∫ q ( x 1 ∣ x 0 ) log ⁡ p ( x 1 ∣ x 0 ) d x 1 ELBO:=\int q(x_{T}|x_{0}) \log \frac{p(x_{T})}{q(x_{T}|x_{0})}\mathrm{d}x_{T}\\ +\sum_{t=2}^T \int q(x_{t-1},x_{t}|x_{0})\log \frac{p(x_{t-1}|x_{t})}{q(x_{t-1}|x_{t}, x_{0})}\mathrm{d}x_{t-1}x_{t}\\+\int q(x_{1}|x_{0})\log p(x_{1}|x_{0})\mathrm{d}x_{1} ELBO:=q(xTx0)logq(xTx0)p(xT)dxT+t=2Tq(xt1,xtx0)logq(xt1xt,x0)p(xt1xt)dxt1xt+q(x1x0)logp(x1x0)dx1

Loss

L o s s : = − E L B O = D K L ( q ( x T ∣ x 0 ) ∥ p ( x T ) ) + ∑ t = 2 T ∫ q ( x t ∣ x 0 ) d x t D K L ( q ( x t − 1 ∣ x t , x 0 ) ∥ p ( x t − 1 ∣ x t ) ) − ∫ q ( x 1 ∣ x 0 ) log ⁡ p ( x 1 ∣ x 0 ) d x 1 Loss:=-ELBO= D_{KL} (q(x_{T}|x_{0})\| p(x_{T}))\\ +\sum_{t=2}^T \int q(x_{t}|x_{0})\mathrm{d}x_{t}D_{KL}(q(x_{t-1}|x_{t}, x_{0})\|p(x_{t-1}|x_{t}))\\-\int q(x_{1}|x_{0})\log p(x_{1}|x_{0})\mathrm{d}x_{1} Loss:=ELBO=DKL(q(xTx0)p(xT))+t=2Tq(xtx0)dxtDKL(q(xt1xt,x0)p(xt1xt))q(x1x0)logp(x1x0)dx1

  • prior matching term
  • denoising matching term
  • reconstruction term

Diffusion Models

basic assumption

  • tractable distr: p ( x T ) p(x_{T}) p(xT)
  • forward trajectory(Markov process): q ( x t ∣ x t − 1 ) q(x_{t}|x_{t-1}) q(xtxt1) is fixed (has no unlearned parameter)

Definition(Diffusion Model)

  • tractable distr: p ( x T ) ∼ N ( 0 , 1 ) p(x_{T})\sim N(0,1) p(xT)N(0,1)
  • generative model/backward trajectory: p ( x t − 1 ∣ x t ) ∼ N ( μ ( t ) , Σ ( t ) ) p(x_{t-1}|x_{t})\sim N(\mu(t),\Sigma(t)) p(xt1xt)N(μ(t),Σ(t))
  • forward trajectory(Gaussian diffusion): q ( x t ∣ x t − 1 ) ∼ N ( x t − 1 1 − β t , β t ) q(x_{t}|x_{t-1})\sim N(x_{t-1}\sqrt{1-\beta_t},\beta_t) q(xtxt1)N(xt11βt ,βt),

Parameters:

  • β t = 1 − α t \beta_t=1-\alpha_t βt=1αt or α ˉ t : = ∏ t α t \bar{\alpha}_t:=\prod_t\alpha_t αˉt:=tαt: noise schedule, where α t \alpha_t αt is small
  • α ˉ t \sqrt{\bar{\alpha}_t} αˉt : signal rate

Fact.

  • q ( x t ∣ x 0 ) ∼ N ( x 0 α ˉ t , 1 − α ˉ t ) q(x_{t}|x_{0})\sim N(x_{0}\sqrt{\bar{\alpha}_t},1-\bar{\alpha}_t) q(xtx0)N(x0αˉt ,1αˉt)
  • q ( x t − 1 ∣ x t , x 0 ) ∼ N ( μ q ( x t , x 0 ) , σ 2 ( t ) ) q(x_{t-1}|x_{t},x_{0})\sim N(\mu_q(x_t ,x_0),\sigma^2(t)) q(xt1xt,x0)N(μq(xt,x0),σ2(t)) where
    μ q ( x t , x 0 ) : = α t ( 1 − α ˉ t − 1 ) x t − α ˉ t − 1 ( 1 − α t ) x 0 1 − α ˉ t = 1 α t x t − β t 1 − α ˉ t α t ϵ 0 \mu_q(x_t,x_0):=\frac{\sqrt{\alpha_t}(1-\bar\alpha_{t-1})x_t-\sqrt{\bar\alpha_{t-1}}(1-\alpha_{t})x_0}{1-\bar\alpha_t}\\ =\frac{1}{\sqrt{\alpha_t}}x_t-\frac{\beta_t}{\sqrt{1-\bar\alpha_t}\sqrt{\alpha_t}}\epsilon_0 μq(xt,x0):=1αˉtαt (1αˉt1)xtαˉt1 (1αt)x0=αt 1xt1αˉt αt βtϵ0
    and σ 2 ( t ) : = 1 − α ˉ t − 1 1 − α ˉ t β t \sigma^2(t):=\frac{1-\bar\alpha_{t-1}}{1-\bar\alpha_t}\beta_{t} σ2(t):=1αˉt1αˉt1βt.

Design I: p ( x t − 1 ∣ x t ) ∼ N ( μ ( t ) , Σ ( t ) ) p(x_{t-1}|x_{t})\sim N(\mu(t),\Sigma(t)) p(xt1xt)N(μ(t),Σ(t)):
μ ( t ) = α t ( 1 − α ˉ t − 1 ) x t − β t α ˉ t − 1 x ^ ( x t , t ) 1 − α ˉ t Σ ( t ) = σ 2 ( t ) \mu(t)=\frac{\sqrt{\alpha_t}(1-\bar\alpha_{t-1})x_t-\beta_{t}\sqrt{\bar\alpha_{t-1}}\hat{x}(x_t,t)}{1-\bar\alpha_t}\\ \Sigma(t)=\sigma^2(t) μ(t)=1αˉtαt (1αˉt1)xtβtαˉt1 x^(xt,t)Σ(t)=σ2(t)

Design II: p ( x t − 1 ∣ x t ) ∼ N ( μ ( t ) , Σ ( t ) ) p(x_{t-1}|x_{t})\sim N(\mu(t),\Sigma(t)) p(xt1xt)N(μ(t),Σ(t)):
μ ( t ) = 1 α t x t − β t 1 − α ˉ t α t ϵ ^ ( x t , t ) Σ ( t ) = σ 2 ( t ) \mu(t)=\frac{1}{\sqrt{\alpha_t}}x_t-\frac{\beta_t}{\sqrt{1-\bar\alpha_t}\sqrt{\alpha_t}}\hat{\epsilon}(x_t,t)\\ \Sigma(t)=\sigma^2(t) μ(t)=αt 1xt1αˉt αt βtϵ^(xt,t)Σ(t)=σ2(t)

Fact.
Under the design I:
D K L ( q ( x t − 1 ∣ x t , x 0 ) ∥ p θ ( x t − 1 ∣ x t ) ) = 1 2 σ t 2 ( 1 − α ˉ t − 1 ) β t 2 ( 1 − α ˉ t ) 2 ∥ x ^ ( x t , t ) − x 0 ∥ 2 = 1 2 ( 1 1 − α ˉ t − 1 − 1 1 − α ˉ t ) ∥ x ^ ( x t , t ) − x 0 ∥ 2 D_{KL} (q(x_{t−1}|x_t , x_0) \| p_θ (x_{t−1} |x_t))=\frac{1}{2\sigma_t^2}\frac{(1-\bar{\alpha}_{t-1})\beta_t^2}{(1-\bar{\alpha}_{t})^2}\|\hat{x}(x_t,t)-x_0\|^2\\ =\frac{1}{2}(\frac{1}{1-\bar{\alpha}_{t-1}}-\frac{1}{1-\bar{\alpha}_{t}})\|\hat{x}(x_t,t)-x_0\|^2 DKL(q(xt1xt,x0)pθ(xt1xt))=2σt21(1αˉt)2(1αˉt1)βt2x^(xt,t)x02=21(1αˉt111αˉt1)x^(xt,t)x02

Under the design II:
D K L ( q ( x t − 1 ∣ x t , x 0 ) ∥ p θ ( x t − 1 ∣ x t ) ) = 1 2 σ t 2 β t 2 ( 1 − α ˉ t ) α t 2 ∥ ϵ ^ ( x t , t ) − ϵ 0 ∥ 2 D_{KL} (q(x_{t−1}|x_t , x_0) \| p_θ (x_{t−1} |x_t))=\frac{1}{2\sigma_t^2}\frac{\beta_t^2}{(1-\bar{\alpha}_{t})\alpha_t^2}\|\hat{\epsilon}(x_t,t)-\epsilon_0\|^2 DKL(q(xt1xt,x0)pθ(xt1xt))=2σt21(1αˉt)αt2βt2ϵ^(xt,t)ϵ02

Algorithm

Loss:
L = ∑ t L t L t ≈ ∑ ϵ ∼ N ( 0 , 1 ) ∥ ϵ − ϵ ^ ( x t , t ) ∥ 2 , ( 0 ≤ t < T ) L=\sum_t L_t\\ L_t\approx \sum_{\epsilon\sim N(0,1)}\|\epsilon-\hat{\epsilon}(x_{t},t)\|^2,(0\leq t<T) L=tLtLtϵN(0,1)ϵϵ^(xt,t)2,(0t<T)
where x t : = α ˉ t x 0 + 1 − α ˉ t ϵ x_{t}:=\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1-\bar{\alpha}_t}\epsilon xt:=αˉt x0+1αˉt ϵ.

train NN ϵ ^ \hat\epsilon ϵ^ by data { ( ϵ ^ ( x t ( x 0 , i , ϵ i l ) , t ) , ϵ i l ) , ϵ i l ∼ N ( 0 , 1 ) , l = 1 , ⋯ , L } \{(\hat{\epsilon}(x_{t}(x_{0,i},\epsilon_{il}),t),\epsilon_{il}),\epsilon_{il}\sim N(0,1),l=1,\cdots, L\} {(ϵ^(xt(x0,i,ϵil),t),ϵil),ϵilN(0,1),l=1,,L} with size of N L NL NL for each t t t


Exercise

  1. Given a latent variable model p ( x , z ) p(x,z) p(x,z) with variational distr. q ( z ∣ x ) q(z|x) q(zx). q ( x ) q(x) q(x) represents data distr. and let q ( x , z ) = q ( z ∣ x ) q ( x ) q(x,z)=q(z|x)q(x) q(x,z)=q(zx)q(x).
    ∫ q ( x ) L x = ∫ q ( x , z ) log ⁡ p ( x , z ) q ( z ∣ x ) ∼ D K L ( q ( x , z ) ∥ p ( x , z ) ) \int q(x)L_x=\int q(x,z)\log\frac{p(x,z)}{q(z|x)}\sim D_{KL}(q(x,z)\|p(x,z)) q(x)Lx=q(x,z)logq(zx)p(x,z)DKL(q(x,z)p(x,z))
    where L x L_x Lx is LEBO.

References

  1. Jonathan Ho, Ajay Jain, Pieter Abbeel. Denoising Diffusion Probabilistic Models, 2020.
  2. Calvin Luo, Understanding Diffusion Models: A Unified Perspective, 2022

相关文章:

My Note of Diffusion Models

Diffusion Models Links: https://theaisummer.com/diffusion-models/ Markovian Hierachical VAE rvs: data: x 0 x_{0} x0​,representation: x T x_{T} xT​ ( p ( x 0 , x 1 , ⋯ , x T ) , q ( x 1 , ⋯ , x T ∣ x 0 ) ) (p(x_0,x_1,\cdots,x_T),q(x_1,\cdots,x_{T…...

【P37】JMeter 仅一次控制器(Once Only Controller)

文章目录 一、仅一次控制器&#xff08;Once Only Controller&#xff09;参数说明二、测试计划设计2.1、测试计划一2.1、测试计划二 一、仅一次控制器&#xff08;Once Only Controller&#xff09;参数说明 可以让控制器内部的逻辑只执行一次&#xff1b;单次的范围是针对某…...

cleanmymac要不要下载装机?好不好用

当我们收到一台崭新的mac电脑&#xff0c;第一步肯定是找到一款帮助我们管理电脑运行的“电脑管家”&#xff0c;监控内存运行、智能清理系统垃圾、清理Mac大文件旧文件、消除恶意软件、快速卸载更新软件、隐私保护、监控系统运行状况等。基本在上mac电脑防护一款CleanMyMac就够…...

DNS风险分析及防护研究(五):常见的DNS威胁与防御(中科三方)

DNS是互联网运行重要的基础设施&#xff0c;在全球互联网运转中扮演重要作用。互联网中的每一次访问都开始于一次DNS查询&#xff0c;从而将人们更好辨识的域名转换为数字化的IP地址。随着互联网的快速发展以及网络技术的快速发展&#xff0c;DNS固有的缺陷逐步暴露出来&#x…...

使用geoserver发布shp和tiff数据

一、安装并启动geoserver服务 1.1 下载geoserver 进入官网下载 由于geoserver是使用Java语言开发的&#xff0c;所以运行需要java的环境&#xff0c;不同geoserver的版本号对java的版本要求不同&#xff0c;所以选择版本时需注意对应java的版本要求&#xff0c;由于我本地安…...

谷歌周彦祺:LLM浪潮中的女性科学家多面手丨智源大会嘉宾风采

导读 大模型研发竞赛如火如荼&#xff0c;谷歌紧随OpenAI其后推出PalM2、Gemini等系列模型。Scaling Law是否仍然适用于当下的大模型发展&#xff1f;科技巨头与初创企业在竞争中各有哪些优势和劣势&#xff1f;模型研究者应秉持哪些社会责任&#xff1f; 2023智源大会「基础模…...

Burp模块

Target模块 记录流量 1.Target按主机或域名分类记录 2.HTTP History 按时间顺序记录且会记录很多次 3.Target模块的作用 &#xff08;1&#xff09;把握网站的整体情况 &#xff08;2&#xff09;对一次工作的域进行分析 &#xff08;3&#xff09;分析网站存在的攻击面 …...

sql笔记:SQL SERVER字符串填充(标量值函数创建、标量值函数调用)

/*字符串填充 ,如果返回 -1 说明输入参数有错误*/ CREATE FUNCTION [dbo].[uf_pad_string] ( @string_unpadded VARCHAR(100), --123填充前字符串 @pad_char VARCHAR(1), --0 填充的字符串 @pad_count tinyint, --10 填充后字符串长度 @pad_p…...

python使用hTTP方法

Python中可以使用requests库来发送HTTP请求&#xff0c;其中包括GET、POST、PUT、DELETE等方法。下面是一个使用requests库发送HTTP请求的示例&#xff1a; python import requests # 发送GET请求 response requests.get(Example Domain) # 发送POST请求 data {key1: valu…...

JavaSE常用API

1. Math.round(11.5)等于多少&#xff1f;Math.round(- 11.5) 又等于多少? Math.round(11.5)的返回值是 12&#xff0c;Math.round(-11.5)的返回值是-11。四舍五入的原理是在参数上加 0.5然后进行取整。 2. switch 是否能作用在 byte 上&#xff0c;是否能作用在 long 上…...

华为OD机试之模拟商场优惠打折(Java源码)

模拟商场优惠打折 题目描述 模拟商场优惠打折&#xff0c;有三种优惠券可以用&#xff0c;满减券、打折券和无门槛券。 满减券&#xff1a;满100减10&#xff0c;满200减20&#xff0c;满300减30&#xff0c;满400减40&#xff0c;以此类推不限制使用&#xff1b; 打折券&…...

5月VR大数据:Quest 2下跌超1%,其它变化不大

Hello大家好&#xff0c;每月一期的VR内容/硬件大数据统计又和大家见面了。 想了解VR软硬件行情么&#xff1f;关注这里就对了。我们会统计Steam平台的用户及内容等数据&#xff0c;每月初准时为你推送&#xff0c;不要错过喔&#xff01; 本数据报告包含&#xff1a;Steam VR硬…...

CW32系列模数转换器(ADC)

模数转换器&#xff08;ADC&#xff09;的主要功能是将模拟量转换为数字量&#xff0c;方便MCU进行处理。下面以CW32L083为例介绍CW系列的模数转换器的特点和功能&#xff0c;并提供演示实例。 一、概述 CW32L083 内部集成一个 12 位精度、最高 1M SPS 转换速度的逐次逼近型模…...

电动力学专题:电磁场规范不变性与规范自由度

对称性&#xff0c;不变性&#xff0c;相对性&#xff0c;协变形 在现代物理学中常常被认为具有相同的含义&#xff08;好拗口&#xff09; 规范与规范的自由度 保证电磁场物理量不改变的情况下&#xff0c;有多组势可供选择&#xff0c;而每组势可以称为一个规范 规范不变性…...

max delay的应用场景与常见问题

max delay与min delay用来约束start points到endpoints点对点的路径长度,set_max_delay约束最大值,set_min_delay约束最小值。 max delay的-from和-to并不局限在get_pins,get_cells和get_clocks同样可以。 set_max_delay 5 -from UFF0/Q -to UFF1/D set_max_delay -from …...

非阻塞队列

非阻塞队列 首先我们要简单的理解下什么是非阻塞队列&#xff1a; 与阻塞队列相反&#xff0c;非阻塞队列的执行并不会被阻塞&#xff0c;无论是消费者的出队&#xff0c;还是生产者的入队。 在底层&#xff0c;非阻塞队列使用的是CAS(compare and swap)来实现线程执行的非阻塞…...

动力电池管理系统(BMS)

BMS技术 目录 BMS技术 一、BMS简介 二、BMS主要功能 1、参数检测 2、剩余电量&#xff08;SOC&#xff09;估计 3、充放电控制 4、热管理 5、均衡控制 6、故障诊断 7、信息监控 8、参数标定 9、CAN总线接口 三、BMS架构组成 1、BMS的拓扑架构 1、1集中式架构的B…...

ChatGPT桌面客户端支持gpt4模型,附使用说明

#软件核心功能&#xff1a; 1、支持OpenAI官方秘钥及API2D双秘钥使用&#xff1b;如果全局魔法&#xff0c;可以自己用官方秘钥&#xff1b;没魔法国内可直接使用API2D秘钥&#xff1b; 2、内置GPT4模型选项&#xff0c;如果你的官方秘钥支持可直接使用&#xff1b;你也可以注册…...

Vivado下时序逻辑模块的仿真

文章目录 D触发器两级D触发器带异步复位的D触发器带异步复位和同步置数的D触发器移位寄存器单口RAM伪双口RAM真双口RAM单口ROM 组合逻辑电路在逻辑功能上特点是任意时刻的输出仅仅取决于当前时刻的输入&#xff0c;与电路原来的状态无关。 时序逻辑在逻辑功能上的特点是任意时刻…...

ThreadLocal的使用方式

1. ThreadLocal的使用方式 (1) 在关联数据类中创建private static ThreadLocal 在下面的类中&#xff0c;私有静态 ThreadLocal 实例&#xff08;serialNum&#xff09;为调用该类的静态 SerialNum.get() 方法的每个 线程维护了一个“序列号”&#xff0c;该方法将返回当前…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟

2025年4月29日&#xff0c;在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上&#xff0c;可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞&#xff0c;强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...

Vue 3 + WebSocket 实战:公司通知实时推送功能详解

&#x1f4e2; Vue 3 WebSocket 实战&#xff1a;公司通知实时推送功能详解 &#x1f4cc; 收藏 点赞 关注&#xff0c;项目中要用到推送功能时就不怕找不到了&#xff01; 实时通知是企业系统中常见的功能&#xff0c;比如&#xff1a;管理员发布通知后&#xff0c;所有用户…...