Yolov5训练自己的数据集
先看下模型pt说明
YOLOv5s:这是 YOLOv5 系列中最小的模型。“s” 代表 “small”(小)。该模型在计算资源有限的设备上表现最佳,如移动设备或边缘设备。YOLOv5s 的检测速度最快,但准确度相对较低。
YOLOv5m:这是 YOLOv5 系列中一个中等大小的模型。“m” 代表 “medium”(中)。YOLOv5m 在速度和准确度之间提供了较好的平衡,适用于具有一定计算能力的设备。
YOLOv5l:这是 YOLOv5 系列中一个较大的模型。“l” 代表 “large”(大)。YOLOv5l 的准确度相对较高,但检测速度较慢。适用于需要较高准确度,且具有较强计算能力的设备。
YOLOv5x:这是 YOLOv5 系列中最大的模型。“x” 代表 “extra large”(超大)。YOLOv5x 在准确度方面表现最好,但检测速度最慢。适用于需要极高准确度的任务,且具有强大计算能力(如 GPU)的设备。
YOLOv5n:这是 YOLOv5 系列中的一个变体,专为 Nano 设备(如 NVIDIA Jetson Nano)进行优化。YOLOv5n 在保持较快速度的同时,提供适用于边缘设备的准确度。
图片标注我们用到了一个名为labelimg的工具:https://github.com/tzutalin/labelImg
找一个编译好的运行程序
下载后删除自带的分类文件
我这里也简要介绍一遍过程,然后也为大家避坑,我们在训练前首先需要采集图片样本,然后再对图片中的待识别物体进行标注。
我们首先需要建立如下的文件夹:
选择yolo环境,配置自动保存
添加标签
标记图形
快捷键
Ctrl + u Load all of the images from a directory
Ctrl + r Change the default annotation target dir
Ctrl + s Save
Ctrl + d Copy the current label and rect box
Ctrl + Shift + d Delete the current image
Space Flag the current image as verified
w Create a rect box
d Next image
a Previous image
del Delete the selected rect box
Ctrl++ Zoom in
Ctrl-- Zoom out
↑→↓← | Keyboard arrows to move selected rect box
标记保存后会在相应目录生成txt文件,文件中就是标记的坐标,和编号
最后还要做的是建立yaml文件,文件的位置也不要放错,咱们去yolov5程序中,复制VOC.yaml成test.yaml
其中train和val都是我们images的目录,labels的目录不用写进去,会自动识别。nc代表识别物体的种类数目,names代表种类名称,如果多个物体种类识别的话,可以自行增加。
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
# Example usage: python train.py --data VOC.yaml
# parent
# ├── yolov5
# └── datasets
# └── VOC ← downloads here (2.8 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
train: E:/hua/python/yolo_t/images/train/
val: E:/hua/python/yolo_t/images/val/
test: E:/hua/python/yolo_t/images/test/
# Classes
names:0: excav
进入环境
conda activate yolov5_cuda10.2
到目前,我们的训练的材料就已经准备好了,先测试下环境
python segment/predict.py --weights weights/yolov5m-seg.pt --data data/images/bus.jpg
测试环境提示保存环境就没有问题了
目录层级
修改train.py代码
import os下面添加
os.environ["GIT_PYTHON_REFRESH"] = "quiet"
否则会出现 Example:
export GIT_PYTHON_REFRESH=quiet错误
继续修改data文件
训练代码
python train.py
出现如下错误
assert nf > 0 or not augment, f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}'
AssertionError: train: No labels found in E:\hua\python\yolo_t\labels\train.cache, can not start training. See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
放弃挣扎了
直接使用现有例子
修改训练文件
进行训练
python train.py
训练完成
权重文件
可以自行修改添加数据
添加标记
添加类型
识别,修改detect.py
执行,等待出结果
相关文章:

Yolov5训练自己的数据集
先看下模型pt说明 YOLOv5s:这是 YOLOv5 系列中最小的模型。“s” 代表 “small”(小)。该模型在计算资源有限的设备上表现最佳,如移动设备或边缘设备。YOLOv5s 的检测速度最快,但准确度相对较低。 YOLOv5m࿱…...

Bert+FGSM中文文本分类
我上一篇博客已经分别用BertFGSM和BertPGD实现了中文文本分类,这篇文章与我上一篇文章BertFGSM/PGD实现中文文本分类(Loss0.5L10.5L2)_Dr.sky_的博客-CSDN博客的不同之处在于主要在对抗训练函数和embedding添加扰动部分、模型定义部分、Loss函数传到部分…...
爬楼梯问题-从暴力递归到动态规划(java)
爬楼梯,每次只能爬一阶或者两阶,计算有多少种爬楼的情况 爬楼梯--题目描述暴力递归递归缓存动态规划暴力递归到动态规划专题 爬楼梯–题目描述 一个总共N 阶的楼梯(N > 0) 每次只能上一阶或者两阶。问总共有多少种爬楼方式。 示…...
浏览器如何验证SSL证书?
浏览器如何验证SSL证书?当前SSL证书应用越来越广泛,我们看见的HTTPS网站也越来越多。点击HTTPS链接签名的绿色小锁,我们可以看见SSL证书的详细信息。那么浏览器是如何验证SSL证书的呢? 浏览器如何验证SSL证书? 在浏览器的菜单中…...
Linux :: 【基础指令篇 :: 文件及目录操作:(10)】:: ll 指令 :: 查看指定目录下的文件详细信息
前言:本篇是 Linux 基本操作篇章的内容! 笔者使用的环境是基于腾讯云服务器:CentOS 7.6 64bit。 学习集: C 入门到入土!!!学习合集Linux 从命令到网络再到内核!学习合集 目录索引&am…...
Java字符集/编码集
1 字符集/编码集 基础知识 计算机中储存的信息都是用二进制数表示的;我们在屏幕上看到的英文、汉字等字符是二进制数转换之后的结果 按照某种规则, 将字符存储到计算机中,称为编码。反之,将存储在计算机中的二进制数按照某种规则解析显示出来,称为解码。这里强调一下: 按照…...

Apache配置与应用
目录 虚拟web主机httpd服务支持的虚拟主机类型基于域名配置方法基于IP配置方法基于端口配置方法 apache连接保持构建Web虚拟目录与用户授权限制Apache日志分割 虚拟web主机 虚拟Web主机指的是在同一台服务器中运行多个Web站点,其中每一个站点实际上并不独立占用整个…...

API自动化测试【postman生成报告】
PostMan生成测试报告有两种: 1、控制台的模式 2、HTML的测试报告 使用到一个工具newman Node.js是前端的一个组件,主要可以使用它来开发异步的程序。 一、控制台的模式 1、安装node.js 双击node.js进行安装,安装成功后在控制台输入node …...
探索OpenAI插件:ChatWithGit,memecreator,boolio
引言 在当今的技术世界中,插件扮演着至关重要的角色,它们提供了一种简单有效的方式来扩展和增强现有的软件功能。在本文中,我们将探索三个OpenAI的插件:ChatWithGit,memecreator,和boolio,它们…...
linux irq
中断上下部 软中断、tasklet、工作对列 软中断优点:运行在软中断上下文,优先级比普通进程高,调度速度快。 缺点:由于处于中断上下文,所以不能睡眠。 相对于软中断/tasklet,工作对列运行在进程上下文 h…...
串口流控(CTS/RTS)使用详解
1.流控概念 在两个设备正常通信时,由于处理速度不同,就存在这样一个问题,有的快,有的慢,在某些情况下,就可能导致丢失数据的情况。 如台式机与单片机之间的通讯,接收端数据缓冲区已满࿰…...

kube-proxy模式详解
1 kube-proxy概述 kubernetes里kube-proxy支持三种模式,在v1.8之前我们使用的是iptables 以及 userspace两种模式,在kubernetes 1.8之后引入了ipvs模式,并且在v1.11中正式使用,其中iptables和ipvs都是内核态也就是基于netfilter&…...

汽车EDI:如何与Stellantis建立EDI连接?
Stellantis 是一家实力雄厚的汽车制造公司,由法国标致雪铁龙集团(PSA集团)和意大利菲亚特克莱斯勒汽车集团(FCA集团)合并而成,是世界上第四大汽车制造商,拥有包括标致、雪铁龙、菲亚特、克莱斯勒…...
【SCI征稿】1区计算机科学类SCI, 自引率低,对国人友好~
一、【期刊简介】 JCR1区计算机科学类SCI&EI 【期刊概况】IF: 7.0-8.0,JCR1区,中科院2区; 【终审周期】走期刊系统,3-5个月左右录用; 【检索情况】SCI&EI双检; 【自引率】1.30% 【征稿领域】发表人工智能…...
Vue.js优化策略与性能调优指南
导语:Vue.js是一款出色的前端框架,但在处理大规模应用或复杂场景时,性能问题可能会出现。本文将介绍一些Vue.js优化策略和性能调优指南,帮助您提升应用的性能和用户体验。 延迟加载:将应用的代码进行按需加载ÿ…...

HEVC环路后处理核心介绍
介绍 为什么需要环路后处理技术 hevc采用基于快的混合编码框架,方块效应、振铃效应、颜色偏差、图像模糊等失真效应依旧存在,为了降低此类失真影响,需要进行环路滤波技术; 采用的技术 去方块滤波DF,为了降低块效应…...

从组件化角度聊聊设计工程化
目录 设计系统 设计系统的定义 设计系统的优势 设计系统存在的问题 设计工程化 设计系统探索 设计系统落地实践 Design Token Design Token 实践 设计工程化理想方案构想 展望 参考文献 近几年围绕业务中台化的场景,涌现出了许多低代码平台。面对多组件…...

apache的配置和应用
文章目录 一、httpd服务支持的虚拟主机类型包括以下三种:二、构建Web虚拟目录与用户授权限制三、日志分割 虚拟Web主机指的是在同一台服务器中运行多个Web站点,其中每一个站点实际上并不独立占用整个服务器,因此被称为“虚拟”Web 主机。通过虚拟 Web 主…...

Buf 教程 - 使用 Protobuf 生成 Golang 代码和 Typescript 类型定义
简介 Buf 是一款更高效、开发者友好的 Protobuf API 管理工具,不仅支持代码生成,还支持插件和 Protobuf 格式化。 我们可以使用 Buf 替代原本基于 Protoc 的代码生成流程,一方面可以统一管理团队 Protoc 插件的版本、代码生成配置ÿ…...
Java 锁 面试题(ReentrantLock、synchronized)
Java 锁 面试题(ReentrantLock、synchronized) 1. 锁2. ReentrantLock2.1 ReentrantLock 的实现原理2.2 AQS 是什么?2.3 CAS 是什么? 3. synchronized3.1 synchronized 的实现原理3.2 synchronized 的锁升级过程3.2.1 无锁3.2.2 偏…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...

vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...

20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...

消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...

Linux入门(十五)安装java安装tomcat安装dotnet安装mysql
安装java yum install java-17-openjdk-devel查找安装地址 update-alternatives --config java设置环境变量 vi /etc/profile #在文档后面追加 JAVA_HOME"通过查找安装地址命令显示的路径" #注意一定要加$PATH不然路径就只剩下新加的路径了,系统很多命…...
RLHF vs RLVR:对齐学习中的两种强化方式详解
在语言模型对齐(alignment)中,强化学习(RL)是一种重要的策略。而其中两种典型形式——RLHF(Reinforcement Learning with Human Feedback) 与 RLVR(Reinforcement Learning with Ver…...