当前位置: 首页 > news >正文

Jmeter常用断言之响应断言详解

响应断言是最常用的一种断言方法,主要是对响应结果中的文本内容进行断言,比如响应结果是否包含指定的值,或者是否等于指定的值。响应断言可以适用各种返回类型的响应结果,如:Test、html、application/json、application/xml等。

一、断言添加方式

根据需要可在【测试计划】、【线程组】、【线程请求】下添加断言,一般在对应的【线程请求】下添加,如下图所示,即本文所介绍的。
添加路径:【线程请求-点击右键-添加-断言-对应的断言形式】
在这里插入图片描述

二、断言结果查看

2.1.【断言结果】看断言结果

添加路径:【测试计划-点击右键-添加-监听器-断言结果】
在这里插入图片描述
整个测试计划下所有请求所有断言结果报错信息均会在此显示,如下图所示,将所有断言结果的报错信息直接展示出来。
在这里插入图片描述

2.2.【查看结果树】看断言结果

添加路径:【测试计划-点击右键-添加-监听器-查看结果树】,整个测试计划下所有请求所有断言结果报错信息均会在此显示,如下图的形式,切换查看。
在这里插入图片描述

三、响应断言

响应断言界面设置,如下图:
在这里插入图片描述
如上图所示,响应断言分为【Apply to】【测试字段】【模式匹配规则】【测试模式】【自定义失败信息】五个部分。

3.1.Apply to

断言的作用域。
通常使用默认的【Main sample only】(比如给HTTP请求新增断言,选择了Main sample only,那么这个断言的作用域只针对此HTTP请求),没有对其他作用域有过深入的研究。
【Main sample and sub-samples】与【Sub-samples only】这两个作用域的场景是:部分请求一次会触发多个线程。
**【Main sample and sub-samples】**作用于主线程以及子线程,
**【Sub-sample only】**只用作于子线程。
如果选择了【Main sample and sub-samples】,即使主线程成功,子线程失败,那么断言也是以失败做结果。

3.2.测试字段

这个模块,指的是我们使用哪一块的返回信息做断言。
响应文本】指返回的【响应数据】的文本信息response body。
响应代码】指Http响应码,如200、500等。
响应信息】指的是http的【取样器结果】中的response message。
响应头】指http【响应数据】的响应头信息response hearders。
请求头】指http【请求数据】的请求头信息request hearders。
请求数据】指http【请求数据】的请求头信息request body。
URL样本】指断言的当前请求的URL地址,与http【请求数据】的请求头信息request body中的值做对比是否一致。注意:如果有重定向包含重定向url。
文档(文本)】通过Apache Tika从各种的文档中提取的文本进行验证,包括响应文本,pdf、word等等各种格式。
忽略状态(Ignore Status)】 一个请求多项响应断言时,忽略某一项断言的响应结果,而继续下一项断言。
注意:响应文本不等于响应信息。
以上测试字段的断言,可以随便找个接口尝试一下,在下图的结果中查找对应的字段值进行测试。。。
在这里插入图片描述

3.3.模式匹配规则

分为【包括】【匹配】【相等】【字符串】【否】【或者】
包括】响应的结果中包含指定的文本或者字段值,支持正则表达式。
匹配】完全匹配,期望值与实际结果必须完全一致,一般结合正则表达式使用。
相等】完全匹配,响应结果与指定的内容完全一致,不支持正则表达式。
字符串】返回结果,包含指定的字符串,不支持正则表达式。
】合并选择之后,断言结果true为false,false为true。
或者】当有多个断言时,只要有一个断言成功,那么最终结果就是成功的。

3.4.测试模式

断言的内容。如果有多个,按照顺序执行,没有选择【或者】的情况下,所有的断言通过之后,取样器结果才是成功的。

3.5.自定义失败信息

顾名思义,当失败是,可以定义个性化信息。

四、实例演示

请求数据设置2个断言,一个正确的,一个错误的
在这里插入图片描述
查看断言结果:显示有1个失败
在这里插入图片描述
还是上面的设置,如果在【模式匹配规则】处,勾选【或者】,则断言结果就会通过
在这里插入图片描述
断言结果:通过
在这里插入图片描述
还是上面的设置,如果在【模式匹配规则】处,勾选【否】,则断言结果原来失败的会通过,原来通过的会失败,如下图所示:
在这里插入图片描述
直接从【断言结果】处查看,可以看到历史的断言错误日志,比较方便对比
在这里插入图片描述
上面是一个简单的小示例演示【模式匹配】中的字段与【或者】【否】组合的效果,其他字段及模式匹配的断言,大家也可以随便找个接口都试试,挺好玩的。。。

相关文章:

Jmeter常用断言之响应断言详解

响应断言是最常用的一种断言方法,主要是对响应结果中的文本内容进行断言,比如响应结果是否包含指定的值,或者是否等于指定的值。响应断言可以适用各种返回类型的响应结果,如:Test、html、application/json、applicatio…...

【Python学习笔记】36.Python3 MySQL - mysql-connector 驱动(1)

前言 MySQL 是最流行的关系型数据库管理系统,本章节为大家介绍使用 mysql-connector 来连接使用 MySQL, mysql-connector 是 MySQL 官方提供的驱动器。 Python3 MySQL - mysql-connector 驱动 我们可以使用 pip 命令来安装 mysql-connector&#xff1…...

计算机SCI论文课题设计需要注意什么? - 易智编译EaseEditing

课题设计就要本着严谨性和可行性来进行。实验设计的类型要选择准确,统计学的方法要运用合理,研究对象和观察指标的选择也要符合研究目的的要求,技术路线要清晰明了。 关于课题的设计的可行性也要综合考虑,比如前期的相关工作基础…...

Quartz入门教程

本文参考文章编写 Quartz 官网 Quartz 是 OpenSymphony 开源组织在 Job Scheduling 领域又一个开源项目,是完全由 Java 开发的一个开源任务日程管理系统,“任务进度管理器”就是一个在预先确定(被纳入日程)的时间到达时&#xff…...

TypeScript 学习之 function

函数可以实现抽象层,模拟类,信息隐藏和模块。 函数有:有名字的函数、匿名函数 在 JavaScript 中的函数 // 有名字的函数 function add(x, y) {return x y; }// 匿名函数 let myAdd function (x, y) {return x y; };函数类型 typescript 可…...

【云计算自学路线】

云计算包含的技术内容和涉及的方向比较多,一定要进行系统化的学习才能更好的掌握这门技术。 云计算作为互联网新技术领域,现阶段也是出于高速发展期,想学习加入云计算行业的小伙伴可以抓紧机会了,跟着小课一起来了解云计算以及它…...

code01 v2黑屏、花屏、死机、断电重启、休眠死机的进来

症状解决 长话简说,症状如下: 使用浏览器、播放视频等,遇到突然死机或花屏死机的情况 关闭硬件加速,如:浏览器中设置关闭硬件加速,出现这种症状的软件都需要设置 开机电流音、播放与暂停时喇叭吱吱想、打…...

分享107个HTML电子商务模板,总有一款适合您

分享107个HTML电子商务模板,总有一款适合您 107个HTML电子商务模板下载链接:https://pan.baidu.com/s/1VW67Wjso1BRpH7O3IlbZwg?pwd0d4s 提取码:0d4s Python采集代码下载链接:采集代码.zip - 蓝奏云 Aplustemplates 购物模板…...

Barra模型因子的构建及应用系列三之Momentum因子

一、摘要 在之前的Barra模型系列文章中,我们已经初步讲解、构建了Size因子和Beta因子,并分别创建了对应的单因子策略。通过回测发现,其中Size因子的小市值效应具有很强的收益能力。而本篇文章将在该系列下进一步构建Momentum因子。 二、模型…...

8.2.1.3 索引合并优化

索引合并访问方法检索具有多个范围扫描的行,并将其结果合并为一个。此访问方法仅合并来自单个表的索引扫描,而不是跨多个表的扫描。合并可以生成其基础扫描的合并、交叉或交叉的合并。 可以使用索引合并的查询示例: SELECT * FROM tbl_name…...

水雨情在线小能手-雨量水位报警站

雨量水位报警站由水位探测器、雨量传感器、报警灯、扩音器、太阳能板和采集传输控制器组成。实时采集水位等级,三个水位探测器对应3个水位等级,当现场水面浸没相应探测器时,本机会实时发出语音报警,同时可发送相应的预警/报警等级…...

【蓝桥杯集训4】双指针专题(6 / 6)

目录 3768. 字符串删减 - 滑动窗口ac 799. 最长连续不重复子序列 - 滑动窗口 800. 数组元素的目标和 - 二分ac 2816. 判断子序列 - 双指针 1238. 日志统计 - 滑动窗口 1240. 完全二叉树的权值 - 双指针 1、前缀和 - 通过了 5/12个数据 2、双指针 3768. 字符串删减 -…...

文件流,gzip解压,压缩

目录 文件画布 写入 (空文件Foutnew File(Parent,entry.getName());)FileOutputStream outnew FileOutputStream(Fout);BufferedOutputStream Boutnew BufferedOutputStream(out);其他流量基于基础包装文件--文件流---字节流 顺序pbf一般是形成后再压缩目…...

在线开会,来开开圆桌会议吧~

圆桌会议应用场景:适合内部培训、部门会议亦或是头脑风暴等较为轻松的场景,有兴趣的朋友可以联系我来测试哦~~ 上图: 图:圆桌会议应用截图 在圆桌布局之下,企业可以将每一位参会者和座位绑定,1:1模拟线下圆…...

使用营销自动化的 7 大主要优势

对于大多数企业家来说,自动化已成为在数字时代简化业务的必要条件。那么,您可以采取哪些步骤来实施营销自动化呢? 1. 社交媒体整合 拥有吸引人的社交媒体形象是成功的先决条件。您不可能完成所有社交媒体营销任务,使用自动化软件&…...

【图像分类】基于PyTorch搭建GRU实现MNIST手写数字体识别(单/双向GRU,附完整代码和数据集)

写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 在https://blog.csdn.net/AugustMe/article/details/128969138文章中,我们使用了基于PyTorch搭建LSTM实现MNIST手…...

day14_oop_抽象_接口

今日内容 上课同步视频:CuteN饕餮的个人空间_哔哩哔哩_bilibili 同步笔记沐沐霸的博客_CSDN博客-Java2301 零、 复习昨日 一、作业 二、抽象 三、接口 零、 复习昨日 多态的好处: 扩展性强.加入新的功能,不需要改动代码降低代码耦合度(解耦合或者松耦合) 一、抽象类 1.1 抽象类…...

模式识别 | MATLAB实现DNN深度神经网络模式分类识别

分类预测 | MATLAB实现DNN全连接神经网络多特征分类预测 目录 分类预测 | MATLAB实现DNN全连接神经网络多特征分类预测基本介绍任务描述程序设计参考资料基本介绍 DNN的结构不固定,一般神经网络包括输入层、隐藏层和输出层,一个DNN结构只有一个输入层,一个输出层,输入层和输…...

【C++】类和对象三大特性--继承

文章目录1.继承的概念及定义1.1继承的概念1.2 继承定义1.2.1定义格式1.2.2继承关系和访问限定符1.2.3继承基类成员访问方式的变化2.基类和派生类对象赋值转换3.继承中的作用域4.派生类的默认成员函数5.继承与友元6. 继承与静态成员7.复杂的菱形继承及菱形虚拟继承虚拟继承解决数…...

MySQL的存储引擎

目录 一.概念 二.分类 操作 修改默认存储引擎 一.概念 数据库存储引擎是数据库底层软件组织,数据库管理系统(DBMS)使用数据引擎进行创建、查询、更新和删除数据。不同的存储引擎提供不同的存储机制、索引技巧、锁定水平等功能。现在许多不…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...