当前位置: 首页 > news >正文

一站式完成车牌识别任务:从模型优化到端侧部署

交通领域的应用智能化不断往纵深发展,其中最为成熟的车牌识别早已融入人们的日常生活之中,在高速公路电子收费系统、停车场等场景中随处可见。一些企业在具体业务中倾向采用开源方案降低研发成本,但现有公开的方案中少有完成端到端的车牌应用范例

本次飞桨产业实践范例库开源车牌识别场景应用,提供了从技术方案、模型训练优化,到模型部署的全流程可复用方案,降低产业落地门槛。

项目链接

https://github.com/PaddlePaddle/PaddleOCR/tree/dygraph/applications

所有源码及教程均已开源。欢迎大家使用,star鼓励~

基于PaddleOCR的轻量级车牌识别系统

场景难点

本范例解决车牌识别任务,需完成车牌检测模型和车牌识别模型的微调与串联,并部署到端侧设备中。项目包含以下难点:

  • 车牌在图像中的尺度差异大、在车辆上的悬挂位置不固定;
  • 车牌图像质量层次不齐: 角度倾斜、图片模糊、光照不足、过曝等问题严重;
  • 边缘和端测场景应用对模型大小有限制,推理速度有要求。
图1 CCPD绿牌数据集图像

项目方案

针对以上问题,本范例选用PaddleOCR中的超轻量OCR系统PP-OCRv3进行车牌识别系统的开发,通过微调检测和识别模型,在CCPD新能源数据集达到99%的检测精度和94%的识别精度,模型大小为12.8M(检测2.5M+识别10.3M)。基于量化对模型体积进一步压缩到5.8M(1M+4.8M),同时推理速度提升25%。

训练数据 

CCPD(Chinese City Parking Dataset)数据集包含蓝底车牌和新能源车牌,覆盖场景包括各类文字形态(倾斜、模糊)与气候环境(如阴雨天、雪天等),其中新能源车牌训练集数量为5769张。CCPD数据标签体现在图片文件名,其命名规范如图2所示。范例中我们通过转换脚本将上述规则转换为PaddleOCR的数据标注格式并划分数据集。

图2 文件名称命名规则

 模型优化 

在少量数据的情况下,优秀的预训练模型能够带来更好的精度和泛化性。本范例选择PaddleOCR最新发布的PP-OCRv3模型完成数据微调。PP-OCRv3在PP-OCRv2的基础上,端到端指标H-means在中文场景再提升5%, 英文数字模型提升11%,如图3所示

图3 不同模型精度/耗时/大小对比

在具体策略方面,PP-OCRv3在检测部分使用ResidualSE-FPN(残差注意力机制的FPN结构),识别部分使用SVTR_LCNet轻量级文本识别网络,GuidedTraining of CTCAttention损失指导CTC损失训练策略。上述策略的详细解释将在直播课展开。

图4 PP-OCRv3具体策略展示

由于车牌场景均为边端设备部署,因此对速度和模型大小有比较高的要求。采用量化训练的方式能够压缩模型大小、加速模型推理速度。模型量化可以在基本不损失模型精度的情况下,将FP32精度的模型参数转换为Int8精度,减小模型参数大小并加速计算,使用量化后的模型在移动端等部署时更具备速度优势。

综上,对于车牌检测和识别有如下3种方案:

  • PP-OCRv3中英文超轻量预训练模型直接预测
  • 基于PP-OCRv3的策略在CCPD数据集中微调
  • 基于PP-OCRv3的策略在CCPD数据集中微调后量化

最终,检测方案指标如表1所示,识别方案如表2所示。

表1 检测方案指标

表2 识别方案指标

预测部署 

边缘部署和端侧部署是车牌识别的常见部署方式,PaddleLite轻量化推理引擎是飞桨专为手机、IOT端提供的高效推理能力。本范例采用PaddleLite的cpp推理,在骁龙855上完成示例演示,最终端到端预测速度为224ms。

产业实践范例教程,助力企业跨越AI落地鸿沟

飞桨产业实践范例,致力于加速AI在产业落地的前进路径,减少理论技术与产业应用的差距。范例来源于产业真实业务场景,通过完整的代码实现,提供从数据准备到模型部署的方案过程解析,堪称产业落地的“自动导航”。

  • 真实产业场景:与实际具有AI应用的企业合作共建,选取企业高频需求的AI应用场景如智慧城市-安全帽检测、智能制造-表计读数等;
  • 完整代码实现:提供可一键运行的代码,在“AIStudio一站式开发平台”上使用免费算力一键Notebook运行;
  • 详细过程解析:深度解析从数据准备和处理、模型选择、模型优化和部署的AI落地全流程,共享可复用的模型调参和优化经验;
  • 直达项目落地:百度高工手把手教用户进行全流程代码实践,轻松直达项目POC阶段。

相关文章:

一站式完成车牌识别任务:从模型优化到端侧部署

交通领域的应用智能化不断往纵深发展,其中最为成熟的车牌识别早已融入人们的日常生活之中,在高速公路电子收费系统、停车场等场景中随处可见。一些企业在具体业务中倾向采用开源方案降低研发成本,但现有公开的方案中少有完成端到端的车牌应用…...

Linux4.8Nginx Rewrite

文章目录 计算机系统5G云计算第六章 LINUX Nginx Rewrite一、Nginx Rewrite 概述1.常用的Nginx 正则表达式2.rewrite和location3.location4.实际网站使用中,至少有三个匹配规则定义5.rewrite6.rewrite 示例 计算机系统 5G云计算 第六章 LINUX Nginx Rewrite 一、…...

DHT11温湿度传感器

接口定义 传感器通信 DHT11采用简化的单总线通信。单总线仅有一根数据线(SDA),通信所进行的数据交换、挂在单总线上的所有设备之间进行信号交换与传递均在一条通讯线上实现。 单总线上必须有一个上拉电阻(Rp)以实现单…...

RestTemplate超简单上手

目录 1.什么是RestTemplate? 2.RestTemplate的使用 2.1spring环境下 注意1:RestTemplate中发送请求execute()和exchange()方法的区别 execute()方式 exchange()方式 二者的区别 注意2:进阶配置——底层HTTP客户端 2.2非spring环境下 1.什么是R…...

监控系统设计原则及实现目标

1.1.1.1 1 .完善的设计理念: 包括符合国际发展潮流的特性化设计,完整的安防监控及围墙周界报警系统 的布线、设备安装、调试、测试、验收的“交钥匙”工程管理制度,以及符合标 准的质量控制体系。 1.1.1.2 设计原则&#xf…...

VulnHub项目:MONEYHEIST: CATCH US IF YOU CAN

靶机名称: MONEYHEIST: CATCH US IF YOU CAN 地址:MoneyHeist: Catch Us If You Can ~ VulnHub 这个系列是一部剧改编,还是挺好看的,大家有兴趣可以去看看! 废话不多说,直接上图开始! 渗透…...

对象存储OSS简介,一分钟了解对象存储OSS

对象存储(Object Storage)是一种新兴的数据存储方式,与传统的文件系统和块存储不同,对象存储以对象为基本单位进行数据管理和存储。在对象存储中,每个对象都有唯一的标识符,并包含了数据本身以及与之相关的…...

SpringCloud_微服务基础day2(Eureka简介与依赖导入,服务注册与发现)

p6:Eureka简介与依赖导入 前面我们了解了如何对单体应用进行拆分,并且也学习了如何进行服务之间的相互调用,但是存在一个问题,就是虽然服务拆分完成,但是没有一个比较合理的管理机制,如果单纯只是这样编写,…...

#tmux# #终端# 常用工具tmux

tmux tmux是一个终端复用工具,允许用户在一个终端会话中同时管理多个终端窗口,提高了终端使用效率,尤其在服务器上进行远程管理时更加实用。在tmux中,可以创建多个终端窗口和窗格,并在这些窗口和窗格之间自由切换&…...

后端服务架构高性能设计之道

“N 高 N 可”,高性能、高并发、高可用、高可靠、可扩展、可维护、可用性等是后台开发耳熟能详的词了,它们中有些词在大部分情况下表达相近意思。本序列文章旨在探讨和总结后台架构设计中常用的技术和方法,并归纳成一套方法论。 前言 本文主…...

Python中的Time和DateTime

Python在处理与时间相关的操作时有两个重要模块:time和datetime。在本文中,我们介绍这两个模块并为每个场景提供带有代码和输出的说明性示例。 time模块主要用于处理时间相关的操作,例如获取当前时间、时间的计算和格式化等。它提供了一些函数…...

UNIX网络编程卷一 学习笔记 第十九章 密钥管理套接字

随着IP安全体系结构(IPsec)的引入,密钥加密和认证密钥的管理越来越需要一套标准机制。RFC 2367介绍了一个通用密钥管理API,可用于IPsec和其他网络安全服务,该API创建了一个新协议族,即PF_KEY域,…...

excel如何实现识别文本在对应单元格填上数据?

要实现 Excel 识别文本在对应单元格填上数据,有以下两种方法: 方法一:使用 VLOOKUP 函数 1. 在 Excel 工作表中,输入一个表格,列名为对应的文本,行名为不同条目。 2. 准备输入数据,在一个新的…...

Groovy 基本语法

一、简介 类型转换:当需要时,类型之间会自动发生类型转换: 字符串(String)、基本类型(如int) 和类型的包装类(如Integer) 类说明:如果在一个groovy 文件中没有任何类定义,它将被当做script 来处理,也就意味着这个文件将…...

系统学习IT技术的方法与实践

系统学习IT技术的方法与实践 作为一名技术人员,在学习新的IT技术时,采取系统性的学习方法是至关重要的。这样可以帮助我们更好地理解和掌握技术,并提高学习效率。下面我将分享一些我个人在系统学习IT技术方面的方法和实践。 1. 设定明确的学…...

聊聊TCP协议的粘包、拆包以及http是如何解决的?

目录 一、粘包与拆包是什么? 二、粘包与拆包为什么发生? 三、遇到粘包、拆包怎么办? 解决方案1:固定数据大小 解决方案2:自定义请求协议 解决方案3:特殊字符结尾 四、HTTP如何解决粘包问题的&#xf…...

一百二十、Kettle——用kettle把Hive数据同步到ClickHouse

一、目标 用kettle把hive数据同步到clickhouse,简单运行、直接全量导入数据 工具版本:kettle:8.2 Hive:3.1.2 ClickHouse21.9.5.16 二、前提 (一)kettle连上hive (二)kettle连上cli…...

PyTorch 提示和技巧:从张量到神经网络

张量和梯度 我们将深入探讨使用 PyTorch 构建自己的神经网络必须了解的 2 个基本概念:张量和梯度。 张量 张量是 PyTorch 中的中央数据单元。它们是类似于数组的数据结构,在功能和属性方面与 Numpy 数组非常相似。它们之间最重要的区别是 PyTorch 张量…...

第五期:字符串的一些有意思的操作

文章目录 1. 替换空格2. 字符串的左旋转3. 答案代码3.1 替换空格3.2 字符串的左旋转 PS:每道题解题方法不唯一,欢迎讨论!每道题后都有解析帮助你分析做题,答案在最下面,关注博主每天持续更新。 1. 替换空格 题目描述 请…...

使用Anaconda3结合vscode来实现django项目的建立(绝好的介绍)20230608

问题:如何使用Anaconda3结合vscode来实现django项目的建立? 回答: 知识背景 Anaconda3的安装包默认会安装最新版本的Python解释器。如果您想在安装时指定Python解释器的版本,您需要下载对应版本的Anaconda3。例如,如果您想使用Python 3.7&…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...